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Abstract
We review recent results concerning the renormalization group (RG)
transformation of Dyson’s hierarchical model (HM). This model can be seen as
an approximation of a scalar field theory on a lattice. We introduce the HM and
show that its large group of symmetry simplifies drastically the blockspinning
procedure. Several equivalent forms of the recursion formula are presented with
unified notations. Rigourous and numerical results concerning the recursion
formula are summarized. It is pointed out that the recursion formula of
the HM is inequivalent to both Wilson’s approximate recursion formula and
Polchinski’s equation in the local potential approximation (despite the very
small difference with the exponents of the latter). We draw a comparison
between the RG of the HM and functional RG equations in the local potential
approximation. The construction of the linear and nonlinear scaling variables
is discussed in an operational way. We describe the calculation of non-
universal critical amplitudes in terms of the scaling variables of two fixed
points. This question appears as a problem of interpolation between these
fixed points. Universal amplitude ratios are calculated. We discuss the large-N
limit and the complex singularities of the critical potential calculable in this
limit. The interpolation between the HM and more conventional lattice models
is presented as a symmetry breaking problem. We briefly introduce models
with an approximate supersymmetry. One important goal of this review is to
present a configuration space counterpart, suitable for lattice formulations, of
functional RG equations formulated in momentum space (often called exact
RG equations and abbreviated ERGE).

PACS numbers: 03.70.+k, 05.50.+q, 11.10.−z

1751-8113/07/230039+64$30.00 © 2007 IOP Publishing Ltd Printed in the UK R39

http://dx.doi.org/10.1088/1751-8113/40/23/R01
mailto:yannick-meurice@uiowa.edu
http://stacks.iop.org/JPhysA/40/R39


R40 Topical Review

Contents

Frequently used abbreviations 41
1. Introduction 42
2. General and practical aspects of the RG method 44

2.1. Statement of the problem 44
2.2. Basic aspects of the RG method 46
2.3. Practical aspects of blockspinning 49

3. Dyson’s hierarchical model 50
3.1. The model 50
3.2. The RG transformation 52
3.3. The Gaussian (UV) fixed point 53
3.4. The HT fixed point 54

4. Equivalent forms of the recursion formulae 54
4.1. Baker’s form 54
4.2. Gallavotti’s form 55
4.3. Summary 56

5. Inequivalent extensions of the recursion formula 57
5.1. Relation with Wilson’s approximate recursion formula 57
5.2. Gallavotti’s recursion formula 57

6. Motivations, rigourous and numerical results 58
6.1. Motivations 58
6.2. Rigourous results 59
6.3. Numerical results 59

7. Numerical implementation 60
7.1. Polynomial truncations 60
7.2. Volume effects in the symmetric phase 60
7.3. The eigenvalues of the linearized RG transformation 61
7.4. The critical potential 62
7.5. The low-temperature phase 63
7.6. Practical aspects of the hierarchy problem 64

8. Perturbation theory with a large field cutoff 65
8.1. Feynman rules and numerical perturbation theory 65
8.2. Perturbation theory with a large field cutoff 65
8.3. Improved perturbative methods 66
8.4. Large field cutoff in ERGE 66

9. Relation with the ERGE in the LPA approximation 67
9.1. Polchinski equation in the LPA 67
9.2. Infinitesimal form of Gallavotti’s recursion formula 68
9.3. The critical exponents of Polchinski’s equation 68
9.4. Infinitesimal form of Wilson approximate recursion formula 69
9.5. Finite time singularities 69
9.6. Improvement of the LPA 70

10. The nonlinear scaling fields 70
10.1. General ideas and definitions 70
10.2. The small denominator problem 70
10.3. The linear scaling variables of the HT fixed point 70
10.4. The nonlinear scaling variables of the HT fixed point 72
10.5. Argument for the cancellation to all orders 74



Topical Review R41

10.6. The nonlinear scaling variables of the nontrivial fixed point 76
10.7. Convergence issues 77
10.8. The scaling variables of the Gaussian fixed point 77

11. Interpolation between fixed points and critical amplitudes 78
11.1. Global RG flows 78
11.2. Critical amplitudes and RG invariants 78
11.3. Overlapping regions of convergence 79
11.4. Approximately universal ratios of amplitudes 79
11.5. More about log-periodic corrections 80

12. Nontrivial continuum limits 81
12.1. The infinite cutoff limit 81
12.2. Numerical estimates of the universal ratios 82
12.3. Other universal ratios 83
12.4. The critical potential of the symmetric phase 84

13. The large-N limit 85
13.1. Calculations at finite N 85
13.2. Ma’s equation 86
13.3. Singularities of the critical potential U�

0 88
13.4. Open problems 89

14. The improvement of the hierarchical approximation 89
14.1. Scalar models on ultrametric spaces 89
14.2. Improvement of the hierarchical approximation 91
14.3. The hierarchical approximation and its systematic improvement 92
14.4. The improvement of the hierarchical approximation as a symmetry breaking

problem 93
14.5. Other applications 94

15. Models with approximate supersymmetry 94
16. Conclusions 97
Acknowledgments 98
References 99

Frequently used abbreviations

RG: renormalization group
ERGE: exact renormalization group equations
LPA: local potential approximation
HM: (Dyson’s) Hierarchical model
HT: high-temperature
UV: Ultra-violet
IR: Infra-red
�: the change in linear scale after one RG transformation
�: the sum of all the fields
�: the total number of sites
φc: the classical field or magnetization density
φn: the sum of the fields in a block of size 2n

Wn the “raw” local measure after blockspinning 2n sites
Wn: the rescaled local measure after n RG transformations
Hn: Baker’s form of Wn
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Gn: the Gallavotti’s form of Wn

c ≡ 21−2/D

1. Introduction

Quantum field theorists face the arduous task of figuring out the large-scale implications of
models defined by interactions at a small scale. In general, the large distance behaviour of the
theory can be encoded in an effective action Seff which describes the interactions of the zero-
momentum modes of the fields. Knowing Seff , we can answer important questions regarding,
for instance, the stability and triviality of the theory. The renormalization group (RG) method
[1–4] was designed to calculate Seff by a sequence of small steps where the high energy modes
are integrated progressively. This procedure generates a sequence of Seff,�, where � is the
scale above which we have integrated all the modes. In the process, many new interactions
are introduced and with them also functions evolving with �. This can be seen as a flow
in the space of theories. We call this type of flows the RG flows. Important simplifications
may occur near fixed points that have only a few unstable directions, and universal properties
may emerge. Despite the conceptual beauty of the construction, the practical calculation of
the RG flows remains very difficult. The behaviour near fixed points can usually be handled
by some expansion (weak coupling, strong coupling, etc . . . ), but interpolating between two
fixed points is in general a major difficulty. Unfortunately, this is essential to calculate
Seff .

In the following, we review our present understanding of the interpolation between fixed
points for Dyson’s hierarchical model [5, 6], a model for which the calculation of Seff,�

can be reduced to the calculation of the effective potential Veff,� and can be performed
numerically with great accuracy. Other type of hierarchical models have been discussed in
the literature (see, for instance, [7]), however, in the following, we only consider Dyson’s
model. The hierarchical model (HM) will only refer to Dyson’s model in this review. The
RG transformation for the HM can be expressed as a simple one-variable integral equation
very similar to the so-called approximate recursion formula proposed by Wilson [3]. In many
respects, the techniques involved in the solution of this model can be compared to those used in
elementary quantum mechanics. The reason for this remarkable simplicity is that the kinetic
term of the model is not renormalized. In other words, it is a model for which the local
potential approximation (LPA) is exact.

In recent years, the LPA has been widely used in the context of exact renormalization
group equations (ERGE) and has generated a lot of interest. We recommend references
[8–10] for reviews of the recent progress. ERGE allow in principle the study of global
and nonlinear aspects of the RG flows of field theoretical or statistical models. However,
truncation methods are necessary in order to make practical calculations. One particularly
popular choice is to combine Polchinski’s ERGE [11] with the LPA [12]. This results in
a simple partial differential equation (called ‘Polchinski’s equation’ below) for the effective
potential. Polchinski’s equation can also be obtained [13] as an infinitesimal version of the RG
equation for the HM. This suggests that the linearized theories should be close to each other.
Accurate calculations of the critical exponents [14–19] show that the exponents differ only
in the fifth significant digit. In [18], it was believed that the two exponents should coincide,
however this is not the case (this will be explained in section 9).

Note that the word ‘exact’ in ERGE is sometimes a source of controversy. First, the
exact equations are often used together with approximations. Second, it somehow implies
that other equations are not exact. The terminology appears in the 1974 review of Wilson and
Kogut [4]. In this context, it is perfectly correct since it appears after several approximate
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equations have been introduced. Nowadays, the terminology ‘functional RG equations’ may
be more appropriate, since the equations describe the response of generating functionals to
a small change in the cutoff. These equations make sense independently of perturbation
theory. Other RG equations express the invariance of perturbative series under a change in the
renormalization scale. They are also exact, but they are meant to be used in a more restricted
framework. Despite these remarks, we will use the abbreviation ERGE in the rest of this
review since it has become standard in the literature, but the first ‘E’ should be taken with a
grain of salt.

Originally, the HM was introduced by Dyson [5] as a long-range ferromagnetic Ising
model with couplings weaker than the one-dimensional Ising model with long-range couplings
falling off like a power. The existence of a phase transition and of the infinite volume limit
for some range of the parameter controlling the decay of the interactions can be proved
rigorously. Historical motivations and rigourous results are discussed in more detail in
section 6. The model was rediscovered a few years later by Baker [6] in an attempt to
construct models for which Wilson’s approximate recursion formula or an integral equation
of the same form become the exact RG transformation. In this context, the HM appears rather
like an approximation of a scalar field theory on a D-dimensional lattice. Later, we call the
process of interpolation between the HM and lattice models with nearest neighbour interaction
the ‘improvement of the hierarchical approximation’.

One important goal of the review is to stress the similarities between the Polchinski
equation (a generic computational tool) and the HM (often perceived as a toy model). The
motivations for using the HM model are as follows.

• It is a lattice model right from the beginning.
• High-accuracy methods exist to calculate numerically the critical exponents and the RG

flows for arbitrary potentials.
• Conventional expansions (weak and strong coupling, ε-expansion) can be implemented

easily and large-order series can be obtained.
• The hierarchical approximation can in principle be improved [20, 21].

The study of critical phenomena has reached a stage where many methods have been
refined to a point where they provide numbers very close to each other [22, 23]. In the
case of the HM, all the approximations can be compared to very accurate numerical answers.
The ability of constructing the RG flows very accurately means that we can study general
features of these flows far away from fixed points. This type of study is also possible using the
LPA [8, 24–26].

An interesting feature of the HM is its discrete scale invariance which, depending on the
context, can be seen either as an annoyance [27, 28] or an interesting intrinsic property [29].
The review is focused on doing calculations directly in three dimensions. The ε-expansion
near four dimensions,which is reviewed in [30], is not discussed here.

The paper is organized as follows. In section 2, we briefly review the basic concepts of
the RG method, the scaling hypothesis and the practical difficulties of blockspinning. This
section motivates approximations that simplify the blockspinning procedure. Dyson’s HM is
introduced in section 3, with the notation used later in the review. Several equivalent forms
of the recursion formula are presented in section 4. More general recursion formulae which
coincide with the HM’s one for a particular choice of what we call the scale parameter are
introduced in section 5. This includes Wilson’s approximate recursion formula [3] which
is inequivalent to the recursion formula of the HM. In the following, we denote the scale
parameter �. In the literature, the same parameter is often denoted L, but we preferred to keep
that symbol for the linear size of the whole system.
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Having introduced the basic concepts, motivations for the HM, numerical and rigourous
results are reviewed in section 6. The numerical treatment of the recursion formula is discussed
in section 7 and perturbation theory with a large field cutoff in section 8. The relation to
Polchinski’s ERGE in the LPA is discussed in section 9.

We introduce the nonlinear scaling variables associated with a fixed point in section 10.
These quantities, originally introduced by Wegner [31], transform multiplicatively under a
RG transformation. They have features similar to the action-angle variables used in classical
mechanics. Small-denominator problems are in general present and need to be discussed in
each case. In section 11, we describe the non-universal critical amplitudes as RG invariants
made out of two nonlinear scaling fields. A practical calculation based on this method requires
the ability of using both sets of scaling fields in a common intermediate region, in other words,
to interpolate between the fixed points.

The notion of a nontrivial continuum limit, originally introduced by Wilson [32], is
reviewed and applied to the HM in section 12. Calculations of critical amplitudes and their
universal ratios are then discussed. In section 13, we introduce the extension of the HM for N
components and discuss the large-N limit. We compare the results with those obtained with
the Polchinski equation emphasizing the difference in the fifth digit already mentioned above,
which reflects the non-equivalence of the models.

The possibility of improving the hierarchical approximation by breaking its symmetries in
a systematic way is discussed in section 14. Compared to the improvement of the LPA by the
derivative expansion, the improvement of the hierarchical approximation is an underdeveloped
subject. On the other hand, it is clear that much progress remains to be done in the ERGE
approach in order to match the accuracy of other methods [23, 33, 34] for the calculation
of the critical exponents [35]. We hope that this review will facilitate the communication
between the two approaches. Reference [36] is a very recent example of progress made in
this direction. Finally, the possibility of including fermions in approximately supersymmetric
models is briefly discussed in section 15.

One motivation to study global and nonlinear aspects of RG flows not covered in this
review is to improve our understanding of quantum chromodynamics. In this theory of
strongly interacting quarks and gluons, weakly interacting particles are seen at short distance
(asymptotic freedom), while nonperturbative effects cause the confinement of quarks and
gluons at a large distance. Understanding how these two behaviour can be smoothly connected
is a single theory amounts to interpolate between two fixed points of the renormalization group
(RG) transformation. Despite recent progress [10, 37–42] it remains a challenge to understand
confinement in terms of weak-coupling variables. This is work for the future.

2. General and practical aspects of the RG method

In this section, we present the basic ideas behind the RG method and point out the practical
difficulties associated with the so-called blockspin method.

2.1. Statement of the problem

We are interested in the large distance (low momentum, long wavelength) behaviour of scalar
models. We consider a generic scalar model with a lattice regularization and an action S. The
scalar field φx is coupled linearly to a constant source J . We call the total field

� =
∑

x

φx, (2.1)
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and the total number of sites �. With these notations, the partition function reads

Z[J ] =
∫ +∞

−∞
· · ·

∫ +∞

−∞

∏
x

dφx exp(−S + �J). (2.2)

We define the average at J = 0 of an arbitrary function A of the fields as

〈A〉 =
∫ +∞

−∞
· · ·

∫ +∞

−∞

∏
x

dφxA exp(−S)/Z[0] (2.3)

It is clear that

Z[J ]/Z[0] = 1 +
∞∑

q=1

1

q!
J q〈�q〉. (2.4)

The connected parts can be obtained by taking the logarithm of this expression. At the lowest
orders,

〈�2〉c = 〈�2〉 − (〈�〉)2

〈�3〉c = 〈�3〉 − 3〈�2〉〈�〉 + 2(〈�〉)3 (2.5)

〈�4〉c = 〈�4〉 − 4〈�3〉〈�〉 − 3(〈�2〉)2 + 12〈�2〉(〈�〉)2 − 6(〈�〉)4.

In general, we expect that

〈�q〉c ∝ �, (2.6)

and we define

χ(q) = 〈�q〉c/� (2.7)

even though the individual terms scale faster than �. Unless we take the infinite volume limit,
we should in principle write χ

(q)

� in order to remind the dependence on the volume. In the
rest of this subsection, this dependence will be kept implicit. We then write the generating
function of the connected densities

(1/�) ln(Z[J ]/Z[0]) =
∞∑

q=1

1

q!
J qχ(q). (2.8)

It is common to call

G[J ] ≡ −(1/�) ln(Z[J ]/Z[0]), (2.9)

the Gibbs potential and it is clear that

χ(q) = −∂qG[J ]/∂J q. (2.10)

We now introduce 1 in the functional integral in the following way:

1 =
∫ +∞

−∞
dφcδ(φc − �/�). (2.11)

The partition function becomes [43]

Z[J ] =
∫ +∞

−∞
dφc exp(−�(Veff(φc) − φcJ )), (2.12)

with

exp(−�Veff(φc)) ≡
∫ +∞

−∞
· · ·

∫ +∞

−∞

∏
x

dφx exp(−S)δ(φc − �/�). (2.13)
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If for any J, Veff(φc)−φcJ has a unique minimum at φc = φ̄c, we have in the limit of arbitrarily
large �, that

Z[J ] ∝ exp(−�(Veff(φ̄c) − φ̄cJ )). (2.14)

Here φ̄c is a function of J defined implicitly by

∂Veff(φc)/∂φc|φc=φ̄c
= J. (2.15)

Here G[J ] and Veff(φc) are related by a Legendre transform

G[J ] = Veff(φ̄c) − φ̄cJ. (2.16)

In the ferromagnetic language, φc is called the magnetization and J the magnetic field. In
analogy with the gas–liquid transition, Veff plays the role of the Helmholtz potential, φ̄c plays
the role of minus the volume and J the role of the pressure. When we are in the gas phase below
the critical temperature (but above the triple point temperature), if we increase the pressure
keeping the temperature fixed, the volume decreases until a critical pressure is reached where
the gas and the liquid can coexist at an equilibrium pressure but with different specific volumes.
The discontinuity in the magnetization is analogue to the specific volume discontinuity. The
sign is justified by the fact that as we increase J , the magnetization increases, but if we increase
the pressure, the volume decreases.

In the simple case where Veff is an even function with a unique minimum at zero, we can
expand

Veff(φc) =
∞∑

q=1

1

2q!
φ2q

c �(2q). (2.17)

Using the derivative of this expansion to express J in terms of φ̄c, plugging into
equation (2.16), using equation (2.8) and solving order by order in φ̄c, we obtain the well-
known relations

�(2) = 1/χ(2),

�(4) = −χ(4)/(χ(2))4,

�(6) = 10(χ(4))2/(χ(2))7 − χ(6)/(χ(2))6,

(2.18)

and so on. The calculation of the Veff is an important objective the RG method.

2.2. Basic aspects of the RG method

We now consider a scalar model on a D-dimensional cubic lattice with a lattice spacing a. The
RG transformation proceeds in two steps. First, we integrate the �D fields in blocks of linear
size �a while keeping the sum of the fields in the block constant. We then divide the sums
of the fields by a factor �(2+D−η)/2 and treat them as our new field variables. The exponent
η is introduced in order to keep the canonical form of the kinetic term and its calculation is
nontrivial. We then obtain a new theory in terms of a new field variable which is equivalent to
the previous one as long as we only consider processes involving energies smaller than the new
ultraviolet cutoff ∼1/(�a). Given an original action, we assume that the RG transformation
provides a new effective action expressed in terms of the new field variable. We postpone the
discussion of the practical aspects of the partial integration to subsection 2.3.

The information that is kept during the RG transformation is encoded in the average values
of all the integer powers of the sum of the fields in the blocks. We call these average values
the ‘zero momentum Green’s functions at finite volume’. This set of values can be thought
of as an element of an infinite vector space. In the following we call the trajectories in this
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space the RG flows. If we start with an infinite volume lattice, the RG transformation can in
principle be repeated an infinite number of times. If this can be done, the resulting effective
theory is limited to the zero-momentum Green’s functions. We are particularly interested in
finding the fixed points of the RG transformation, since the above limit can be simplified in
the neighbourhood of a fixed point.

The RG transformation has several obvious fixed points. If the interactions are limited to
quadratic ones and there is no restriction on the range of the fields, the partition function can
be calculated exactly using diagonalization and Gaussian integration. The model describes
non-interacting particles of a given mass. We call this mass in cutoff units m. It can be
determined in cutoff units using the zero-momentum two-point function.

After one RG transformation, the mass for the new effective theory is m�. The Gaussian
fixed point (also called the trivial fixed point) corresponds to the theory with m = 0. There are
usually other fixed points which correspond to stable phases, for instance, the high-temperature
fixed point which can be thought as an infinitely massive theory where the fluctuations about
the zero field value are entirely suppressed.

In addition to these obvious fixed points, we expect nontrivial fixed points when D < 4.
These are characterized by one or more unstable directions. The critical hypersurface is
given as the stable manifold (e.g. the basin of attraction) of this nontrivial fixed point. Its
codimension is the number of unstable directions. In the rest of this section, we specialize
the discussion to the case where there is only one unstable direction. The stable manifold can
then be reached by considering a family of models indexed by a parameter which can be tuned
in order to cross the stable manifold. In field theory context, we usually pick the bare mass to
accomplish this purpose. In the statistical mechanics formulation, the inverse temperature β

can be tuned to its critical value βc which is a function of the other interactions.
Near the nontrivial fixed point, we can use the eigenvectors of the linearized RG

transformation as a basis. As far as we are close to the fixed point, the average values of
the powers of the rescaled total field stay approximately unchanged after one transformation.
However, at each iteration, the components in the eigendirections are multiplied by the
corresponding eigenvalue. In the following, we denote the eigenvalue larger than 1 as λ1.
As we assume that there is only one unstable direction, there is only one such eigenvalue and
it is the largest one.

After repeating the renormalization group transformation n times, we have replaced
�Dn sites by one site and associated a block variable with it. We define the finite volume
susceptibility χ(2)

n
as the average value of the square of the sum of all the (unrescaled) fields

inside the block divided by the number of sites �Dn. We can estimate χ(2)
n

near the nontrivial
fixed point. The average of the square of the rescaled variables is approximately a constant
that we call K1. To get the susceptibility, we need to go back to the original variables (so we
multiply K1 by �(2+D−η)n) and divide by the volume �Dn. We can also take into account the
motion along the unstable direction in the linear approximation. In summary, near the fixed
point

χ(2)
n � �n(2−η)

(
K1 + K2λ

n
1(βc − β)

)
. (2.19)

The constant K2 depends on the way the critical hypersurface is approached when β is varied
close to βc. Equation (2.19) is valid only if the linearization procedure is applicable, in other
words if λn

1(βc − β) � 1. On the other hand, when n reaches some critical value n� such that

λn�

1 (βc − β) � 1, (2.20)
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nonlinear effects become important and the sign of (βc − β) becomes important. In the
following, we consider the case of the symmetric phase (β < βc) which is simpler. The order
of magnitude of χ starts stabilizing when n gets of the order of n� and

χ(2)
∞ ≈ �n�(2−η) ≈ (βc − β)−γ , (2.21)

with

γ = (2 − η)ν, (2.22)

and

ν = ln �/ ln λ1. (2.23)

When n 
 n�, the trajectories fall into the completely attractive HT fixed point. The approach
of the fixed point is characterized by corrections proportional to negative powers of the volume.

We can also take into account the corrections due to the so-called irrelevant directions
which correspond to eigenvalues less than 1 and eigenvectors along the stable manifold. We
call the largest of the irrelevant eigenvalues λ2 < 1. As n increases, the distance along
the corresponding eigenvector shrinks as λn

2. The relative size of the correction should be
proportional to

λn�

2 ≈ (βc − β)�s , (2.24)

with

�s = − ln λ2/ ln λ1. (2.25)

Here �s has a lower index s which is short for subleading and should not be confused with the
gap exponent that will be denoted �g . In summary, in the large volume limit and for β → β−

c ,
we have the parametrization

χ(2) � (βc − β)−γ [A0 + A1(βc − β)�s + · · ·]. (2.26)

Linearized calculations near the nontrivial fixed point allow us to calculate the exponents γ

and �s , but not the amplitudes A0 and A1.
It should be emphasized that often the lattice spacing does not appear explicitly but

is considered as a function of the bare parameters. The relation between the two is usually
established by relating lengths calculated in lattice spacing to physical lengths. The continuum
limit consists in taking a trajectory in the space of bare parameters which corresponds to the
limit of zero lattice spacing.

When β > βc, we are in the low-temperature phase and χ(1) �= 0. The sign of χ(1) �= 0
is positive (negative) if we take the limit J → 0 by positive (negative) values. Additional
subtractions are then required as shown in equation (2.5). The case of the low temperature
will be discussed in subsection 7.5 for the HM.

Relations among exponents can be obtained from the scaling hypothesis [44–46]. Making
explicit the dependence of the non-analytical part of the Gibbs potential, denoted Gs , on the
reduced temperature t ≡ (βc/β) − 1, the scaling hypothesis amounts to have

Gs[�
Yt t, �YhJ ] = �DGs[t, J ]. (2.27)

The exponents Y are connected to the critical exponents discussed above by the relations

Yt = 1

ν
Yh = D + 2 − η

2
. (2.28)

It is also common to introduce exponents which describe the correlations as a function of the
inverse distance for the conjugated variables at criticality, namely

xh ≡ D − Yh (2.29)
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xt ≡ D − Yt , (2.30)

for the field and for the energy respectively. The scaling hypothesis will be further discussed
in subsections 3.3, 7.4 and 7.5.

2.3. Practical aspects of blockspinning

In the previous subsection, we have assumed that it was possible to integrate over the variables
in a block while keeping the sum of the field constant. This procedure is usually called
‘blockspinning’, an idea which can be traced back to Kadanoff [47]. In practice, blockspinning
is usually quite complicated. However, for models with actions quadratic in the fields, it is
possible to do it analytically. Of course, for such models, all the correlation functions can
be calculated exactly, but the procedure can be considered as the first step in a perturbative
expansion. To fix the ideas, we can consider a one-dimensional lattice model where the Fourier
transform of the two-point function (the propagator) is G(k). Assuming that the lattice sites
are labelled by integers, we have the periodicity G(k + 2π) = G(k). If we now partition the
lattice into blocks of even–odd pairs of neighbour sites and blockspin within these blocks,
we obtain a new two-point function on a new lattice with a lattice spacing twice larger. If
we denote the Fourier transform of the two-point function after n steps Gn(k), the iteration
formula is

Gn+1(k) = (1 + cos(k/2))Gn(k/2) + (1 − cos(k/2))Gn(k/2 + π). (2.31)

It is clear that the 2π periodicity is preserved and no sharp edges are introduced at least in a
finite number of iterations. The construction can be extended in arbitrary dimensions and was
used as the starting point for the finite-lattice approximation [48].

In order to get an idea of the difficulty to extend the procedure when higher order
interactions are introduced, it is instructive to consider the simple case of a 4-sites ring with
nearest neighbour quadratic interactions and local quartic interactions:

Z =
∫ +∞

−∞
· · ·

∫ +∞

−∞
dφ1 dφ2 dφ3 dφ4 e−SA

2 −SB
2 −S4 , (2.32)

with nearest neighbour quadratic terms

SA
2 = (φ1 − φ2)

2 + (φ3 − φ4)
2, (2.33)

and

SB
2 = (φ2 − φ3)

2 + (φ4 − φ1)
2, (2.34)

and local quartic interactions

S4 = φ4
1 + φ4

2 + φ4
3 + φ4

4 . (2.35)

For further convenience, we also define the next to nearest neighbour quadratic interactions

SNNN
2 = (φ1 − φ3)

2 + (φ2 − φ4)
2. (2.36)

We now try to blockspin. We pick (1, 2) and (3, 4) as our basic blocks and then combine
them into the block containing all the sites. More specifically, it consists in introducing 1 in
the integral in the following form:

1 =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
d� d�(1,2) d�(3,4)δ(� − �(1,2) − �(3,4))

× δ(�(1,2) − φ1 − φ2)δ(�(3,4) − φ3 − φ4). (2.37)
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If we can perform the integration over φ1 − φ2 and φ3 − φ4, and then over �1 − �2, we will
be able to write

Z =
∫ +∞

−∞
d� e−Seff(�). (2.38)

In this illustrative model, Seff(�) is the main quantity of interest. Because of the quadratic
terms SB

2 , we cannot perform the integral over φ1 − φ2 independently of the integral over
φ3 − φ4, and blockspinning is potentially more difficult than evaluating the integral without
intermediate steps. It is interesting to note that the terms of SB

2 connect the fields across the
blocks and are not invariant under independent interchanges (1 ↔ 2) and (3 ↔ 4). These two
transformations are of order 2 and commute; they generate a group of order 4. If we average
SB

2 over the four elements g of this group, we obtain

(1/4)
∑

g

SB
2 (g) = (1/2)

(
SB

2 + SNNN
2

)
. (2.39)

If we replace SB
2 by this average, we have twice more terms but with half of the strength.

Also, the new terms have a longer range. At first sight, it is not clear that the situation is better
than before. However, if we combine this average with one half of the harmless SA

2 , which is
invariant under the above mentioned symmetry group, we obtain

(1/2)
(
SA

2 + SB
2 + SNNN

2

) = 4
(
φ2

1 + φ2
2 + φ2

3 + φ2
4

) − (φ1 + φ2 + φ3 + φ4)
2. (2.40)

The first term affects only the local measure and the second can be incorporated directly into
Seff(�). This simple example illustrates how a symmetry can be used as a guide to build a
(modified) model where blockspinning is feasible.

Dyson’s hierarchical model is a model where a hierarchical exchange symmetry among
the sites is built-in and allows us to blockspin the partition function by performing a sequence
of one-dimensional integrals.

3. Dyson’s hierarchical model

3.1. The model

In this subsection, we describe Dyson’s hierarchical model with the notations used in most of
the rest of this review. The relationship between this formulation and other ones found in the
literature is discussed in sections 4 and 5. The model requires 2nmax sites. We label the sites
with nmax indices xnmax , . . . , x1, each index being 0 or 1. We divide the 2nmax sites into two
blocks, each containing 2nmax−1 sites. If xnmax = 0, the site is in the first block, if xnmax = 1,
the site is in the second block. Repeating this procedure n times (for the two blocks, their
respective two sub-blocks, etc.), we obtain an unambiguous labelling for each of the sites. The
indices on the left provide the coarser division, while the indices on the right provide a finer
division. With an appropriate choice of origin, the indices can be interpreted as the binary
representation of the site numbers. This is represented graphically in figure 1.

The nonlocal part of the total energy reads

H = −1

2

nmax∑
n=1

( c

4

)n ∑
xnmax ,...,xn+1

( ∑
xn,...,x1

φ(xnmax ,...,x1)

)2

. (3.1)

The index n, referred to as the ‘level of interaction’ hereafter, corresponds to the interaction
of the total field in blocks of size 2n. The constant c is a free parameter assumed positive
and which controls the decay of the iterations with the size of the blocks and can be adjusted
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Figure 1. Division in blocks for eight sites. The lower row is x3x2x1.

in order to mimic a D-dimensional model. This point is discussed in more detail below (see
equation (3.23)).

The field φ(xnmax ,...,x1) is integrated over a local measure which we need to specify. In
the following, we will often work with the Ising measure, W0(φ) = δ(φ2 − 1) or a Landau–
Ginsburg measure of the form W0(φ) = exp

(− 1
2m2φ2 − λφ4

)
.

In the case of the Ising measure, the only free parameter is c. If all the φ = +1, then the
cost in energy for flipping one spin is 2

∑
l=1(c/4)l(2l − 1) and is finite in the infinite volume

limit only if c < 2. In the following, it will be assumed that 0 < c < 2.
The hierarchical structure of equation (3.1) allows us to integrate iteratively the fields

while keeping their sums in blocks with two sites constant

Wn+1(φ(1,2)) = exp
(
(β/2)(c/4)n+1φ2

(1,2)

) ×
∫ +∞

−∞
dξWn

(
φ(1,2)

2
+ ξ

)
Wn

(
φ(1,2)

2
− ξ

)
,

(3.2)

where φ(1,2) is understood as the sum of the two fields in the block. After nmax integrations,
we obtain

�Wnmax(�) = e−�Veff(�/�), (3.3)

with

� = 2nmax . (3.4)

Remarkably, the symmetries of the model have allowed us to calculate the partition function
and the effective potential by calculating only (nmax)-independent integrals instead of the
(2nmax)-coupled integrals that one would naively expect.

The symmetry group of the HM is of order 2�−1, which is one half of the number of
configurations for an Ising measure. This can be seen as follows. In any of the blocks of
size 2 we can interchange two sites. The exchange can be done independently in each of the
blocks and this symmetry can be seen as local. There are �/2 blocks of size 2 and so 2�/2

distinct symmetry transformations. Similarly, we can interchange the blocks of size 2 inside
any block of size 4 which generates (2�/4)-independent transformations. We can similarly
generate independent symmetries until we reach the group of order 2 exchanging two blocks
of size �/2. Using

1/2 + 1/4 + · · · + (1/2)nmax = 1 − 1/�,

we obtain the announced result.
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3.2. The RG transformation

As explained in subsection 2.2, the RG transformation consists in a blockspinning and a
rescaling. In the present example, the rescaling is fixed by the requirement of keeping H
unchanged in the infinite volume limit. More specifically, if we define

φ′
x ′

nmax−1,...,x
′
1
=

√
c

4

(
φxnmax ,...,x2,1 + φxnmax ,...,x2,0

)
(3.5)

with

x ′
nmax−1 = xnmax , . . . , x

′
1 = x2, (3.6)

we can rewrite the energy as

H = H ′ − 1

2

∑
x ′

nmax−1,...,x
′
1

(
φ′

(x ′
nmax−1,...,x

′
1)

)2
, (3.7)

with

H ′ = −1

2

nmax−1∑
n=1

( c

4

)n ∑
x ′

nmax−1,...,x
′
n+1

 ∑
x ′

n,...,x
′
1

φ′
(x ′

nmax−1,...,x
′
1)

2

. (3.8)

In other words, we can blockspin without thinking about H and then include the second term
of equation (3.7) in the local measures. The problem is then identical to the original problem
except for the fact that we have to reduce nmax by 1 and to use a new local measure.

The change in the local measure can be expressed through the recursion relation

Wn+1(φ
′) = Nn+1 exp((β/2)φ′2)

∫ +∞

−∞
dξWn

(
φ′
√

c
+ ξ

)
Wn

(
φ′
√

c
− ξ

)
, (3.9)

where Nn+1 is a normalization factor which can be fixed at our convenience. The symbol W
has been used instead of W in order to specify that the field had been rescaled at every step.
The explicit relationship is

Wn((c/4)n/2φn) = Wn(φn), (3.10)

where φn denotes the sum of all the fields in a block of size 2n. Introducing the Fourier
representation

Wn(φ) =
∫ +∞

−∞

dk

2π
eikφRn(k), (3.11)

the recursion formula becomes

Rn+1(k) = Cn+1 e− 1
2 β ∂2

∂k2 (Rn(
√

c/4k))2, (3.12)

with Cn+1 being another arbitrary normalization constant related to the previous one by the
relation Cn+1 = (c/

√
2)Nn+1. We will fix the normalization constant Cn is such a way that

Rn(0) = 1. Rn(k) has then a direct probabilistic interpretation. If we call φn the total
unrescaled field

∑
φx inside blocks of side 2n and 〈· · ·〉n the average calculated without taking

into account the interactions of level strictly larger than n, we can write

Rn(k) = 1 +
∞∑

q=1

(−ik)q

q!
(c/4)qn/2〈(φn)

q〉n. (3.13)

We see that the Fourier transform of the local measure after n iterations generates the zero-
momentum Green’s functions calculated with 2n sites.

Everything that has been done in this section can be generalized in a straightforward
manner for models with N components. All we need to do is to replace φ by a N-dimensional
vector �φ, k by �k and dξ by dNξ . The N-component model is discussed in section 13.
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3.3. The Gaussian (UV) fixed point

In the case where the initial measure is Gaussian

W0(φ) = W0(φ) = e−Aφ2
, (3.14)

we have

Wn(φ) ∝ e−Anφ
2
, (3.15)

with A0 = A and the An calculable from the recursion relation

An+1 = −β/2 + (2/c)An (3.16)

which follows from equation (3.9). The fixed point of this transformation is

A� = βc

2(2 − c)
. (3.17)

With our assumption 0 < c < 2, A� is positive and finite. After resumming the terms, we
obtain

An = A� + (A − A�)(2/c)n. (3.18)

Using equation (3.10), we then find that the measure for the main field � is

Wnmax(�) ∝ e−Anmax �2(c/4)nmax
. (3.19)

This implies that

Veff(φc) = ((A − A�) + A�(c/2)nmax)φ2
c . (3.20)

Given that 0 < c < 2, the second term disappears in the infinite volume limit and if A > A�,
we can interpret A − A� as a quantity proportional to the square of the mass. On the other
hand, if A = A�, we have a massless theory in the infinite volume limit. At finite volume, we
expect that for A = A�,

m2 ∝ (c/2)nmax ∝ L−2, (3.21)

with L being the linear size of the whole system defined by

LD = � = 2nmax . (3.22)

Putting these two equations together, we obtain

c = 21−2/D. (3.23)

In other words, the parameter c can be tuned in such a way that a Gaussian massless field
scales with the number of sites in the same way as a D-dimensional model.

Following the same reasoning, we can determine the parameters introduced in
subsection 2.2. Since we integrate over two sites in one RG transformation, we have

�D = 2. (3.24)

On the other hand, comparing the field rescaling, we obtain

(4/c) = �+D+2−η, (3.25)

which is consistent with equation (3.23) only if

η = 0. (3.26)

In summary, we have

c = �D−2. (3.27)
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We can reinterpret equation (3.18) by noting that it implies that at each RG transformation,
An−A� is rescaled by a factor 2/c. If we introduce some reduced variable ρn ≡ (An−A�)/A�,
then

ρn+1 = (2/c)ρn = �2ρn. (3.28)

With the notations introduced in equation (2.28), we could say that the exponent Y at the
Gaussian fixed point associated with the mass term squared is 2.

It should also be said that the Gaussian fixed point is often called the UV fixed point
because, it is common to use perturbation theory about the Gaussian fixed point to construct
a RG flow from the Gaussian fixed point to the nontrivial fixed point (which is then called an
IR fixed point).

3.4. The HT fixed point

In the high-temperature (HT) limit, β = 0, equation (3.12) becomes

Rn+1(k) = (Rn(
√

c/4k))2. (3.29)

We set Cn+1 = 1 and require R(0) = 1. It is easy to check that

R(k) = eBk2 ln 2/ ln(4/c) = eBk2D/(D+2)

(3.30)

is a fixed point of equation (3.29) for arbitrary B. However, if B �= 0 and the exponent of
k is not a positive integer, we have a branch cut at k = 0 and by taking sufficiently many
derivatives with respect to k, we obtain expressions which blow up at k = 0. For the range
of values 0 < c < 2, the only way to get a power of k in the exponential which is an integer
is to have c = 1, which according to equation (3.23) corresponds to D = 2. For c = 1, the
exponent of k is 1, and the Fourier transform in equation (3.11) is ill defined unless we replace
k by |k| which in turn leads to singular derivatives at k = 0. Consequently, the only choice
that leads to a probability distribution with finite moments is B = 0, or in other words, R = 1.
This fixed point remains a fixed point when β �= 0 and is called the HT fixed point hereafter.
The HT fixed point corresponds to an arbitrarily narrow probability distribution about 0
for the main field and can be interpreted as the case of an arbitrarily massive free field.

4. Equivalent forms of the recursion formulae

The recursion formula will be the main tool used for calculations hereafter. It is important to
identify equivalent or inequivalent forms and to find accurate numerical implementations. In
this section, we review equivalent forms of the recursion formulae used by Baker [6], Felder
[13] and Koch and Wittwer [49, 50]. This section follows closely [50] but with different
notations. In the following, the constants N ′

n,N
′′
n , . . . need to be fixed by some additional

requirement and play no essential role.

4.1. Baker’s form

It is sometimes convenient to factor out the Gaussian fixed point so that in a new ‘system of
coordinates’, the Gaussian fixed point is represented by a constant. If we define

Wn(φ) = exp(−A�φ2)Hn(φ), (4.1)

the recursion formula becomes

Hn+1(φ) = N ′
n+1

∫ +∞

−∞
dξ exp(−2A�ξ 2)Hn

(
φ√
c

+ ξ

)
Hn

(
φ√
c

− ξ

)
. (4.2)
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It is clear from this equation that if Hn is a constant then Hn+1 is also constant. What is
remarkable about this redefinition is that we have replaced exp((β/2)φ2) dξ in equation (3.9)
by dξ exp(−2A�ξ 2). Any other multiplicative redefinition would, in general, lead to some
hybrid form where the weight depends on φ and ξ .

It should also be noted that the variance of the Gaussian weight can be replaced by another
value by a simple change of variable. If we define

H[B](φ) ≡ H(Bφ), (4.3)

the recursion formula becomes

H[B]
n+1(φ) = N ′

n+1B

∫ +∞

−∞
dξ exp(−2A�B2ξ 2)H[B]

n

(
φ√
c

+ ξ

)
H[B]

n

(
φ√
c

− ξ

)
. (4.4)

The recursion used by Baker in [6] is obtained by setting

H[(K/2A�)1/2]
n (φ) = exp

(− 1
2Qn(φ)

)
. (4.5)

Note that Baker allowed a non-zero η in order to mimic the scaling near the nontrivial
fixed point instead of the scaling near the Gaussian fixed point for a conventional lattice
model. It is possible to take into account this modification by changing the value of D used in
equation (3.23). Confusion can be avoided by making reference to the rescaling factor c−1/2.
More explicitly, if we call D′ the dimension used for a field rescaling that depends on η, then
the correspondence is

2(2−η−D′)/2D′ = c−1/2 = 2(2−D)/2D. (4.6)

A short calculation shows that D′ = D(1 − (η/2)). As an example, if we want to have a
scaling corresponding to D′ = 3 and η = 0.04, we can simply work with D = 3.061, . . . ,
with D defined in equation (3.23). Using notation that we hope making clear the relation with
[6], the recursion formula can then be written as

exp

(
−1

2
Qn+1(φ)

)
= N ′′

n+1

∫ +∞

−∞
dξ exp

(
−Kξ 2 − 1

2
Qn

(
φ√
c

+ ξ

)
− 1

2
Qn

(
φ√
c

− ξ

))
.

(4.7)

4.2. Gallavotti’s form

An alternate way of formulating the recursion is to use a convolution with the Gaussian fixed
point

Gn(t) =
∫ +∞

−∞
dφ exp(−A�(t − φ)2)Hn(φ). (4.8)

By factoring out the two exponentials of the quadratic terms, it is possible to relate G to the
Fourier transform of W introduced in equation (3.12). More explicitly

exp(A�t2)Gn(t) ∝ Rn(i2tA�), (4.9)

and in particular the HT fixed point is now proportional to exp(−A�t2). Under the new
transformation, the recursion formula takes the form

Gn+1(t) = N ′′′
n+1

∫ +∞

−∞
dξ exp

(
−2

A�c

2 − c
ξ 2

) (
Gn

(
t√
c

+ ξ

))2

. (4.10)

This form of the recursion formula was used in [13, 49, 50], and its origin can be found in the
work of Gallavotti [51]. More about this question can be found in subsection 5.2 below. In
the following, we call this form of the recursion formula Gallavotti’s form.
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Table 1. Form of the fixed point up to an overall constant in the various coordinates. 1 is short for
a constant and δ is short for a delta function; the last line is the defining equation.

W H G F R f

UV e−A�φ2
1 1 eA�t2

e− k2
4A� e

2−c
4−c

t2

HT δ δ e−A�t2
1 1 1

Equation 3.9 4.1 4.8 4.11 3.11 4.15

If we now define

Gn(t) = exp(−A�t2)Fn(t), (4.11)

the recursion formula becomes after some algebra

Fn+1(t) = N ′′′
n+1

∫ +∞

−∞
dξ exp

(
−4

A�

2 − c
(ξ − t

√
c/4)2

)
(Fn(ξ))2 . (4.12)

From the definitions of Gn and Fn, we have

Fn(t) ∝ Rn(i2tA�), (4.13)

and we can prove the equivalence of (4.12) and (3.12) by using the identity

exp

(
−1

2
β

∂2

∂k2

) (
k

√
c

4

)q

=
√

4A�

π(2 − c)

×
∫ +∞

−∞
dξ exp

(
−4

A�

2 − c

(
ξ + i

k

2A�

√
c/4

)2
)

(2iξA�)q . (4.14)

Finally, if we write

fn(t) = Fn

(
t

√
2 − c

A�(4 − c)

)
, (4.15)

we obtain the form most often used in [50]:

fn+1(t) = N ′′′′
n+1

∫ +∞

−∞
ds exp

(
− 1

1 − c/4
s2

)
(fn(s + t

√
c/4))2. (4.16)

4.3. Summary

The form of the UV and HT fixed points in the various sets of coordinates is summarized in
table 1.

All this looks quite reminiscent of quantum mechanics where we can look at a problem
in a basis where the position operator is diagonal or in another basis where the momentum
operator is diagonal. The two basis are related by a unitary transformation. More generally, in
quantum mechanics, unitary transformations do not affect the spectrum of Hermitian operators
(which represent observables). Universality is a stronger notion than observability in the sense
that some non-universal quantities may have an absolute physical meaning independent of
our choice of integration variables in the functional integral. The idea of transformations that
leave universal properties unchanged have been discussed in [52] where this translate into a
reparametrization invariance.
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5. Inequivalent extensions of the recursion formula

In this section, we discuss more general recursion formulae which coincide with the HM’s
one for a particular choice of the parameter � that controls the change in the linear scale after
one RG transformation.

5.1. Relation with Wilson’s approximate recursion formula

Wilson’s approximate recursion formula was the first simplified RG transformation that was
proposed. It appears in one of the basic RG papers [3] as a result of a rather involved analysis
of the partition function of a scalar model with an UV cutoff. It played an important role,
because it was realized that the RG method could lead to a fully numerical treatment without
any reference to expansions such as perturbation in a weak coupling. It is intended to represent
a situation where � = 2, but instead of having 2D − 1 integration variables, it has only one
corresponding to an approximation where the 2D fields take only two independent values [32],
one in each half of the block. Having decoupled the number of integration variables to �, we
can now write for arbitrary �:

H
[�]
n+1(φ) = N ′′′′′′

n+1

∫ +∞

−∞
dξ e−ξ 2 [

H [�]
n

(
�1− D

2 φ + ξ
)
H [�]

n

(
�1− D

2 φ − ξ
)]�D/2

. (5.1)

For � = 2, we obtain Wilson’s approximate recursion formula, most often written in a form
similar to equation (4.7). For � = 21/D , we obtain the HM recursion formula in the form given
in equation (4.2).

The general case � = 2ζ was discussed in [53] where it was shown that for D = 3, as
ζ increases from ζ = 1/3 to 1, the exponent γ decreases monotonically from 1.30 to 1.22.
Clearly, different values of ζ correspond to different classes of universality.

5.2. Gallavotti’s recursion formula

The recursion formulae presented in subsection 4.2 can also be extended for arbitrary �. This
is indeed easier because the number of sites integrated for the HM, namely 2, appears as the
exponent for F,G and f . The replacements are

2 → �D (5.2)

1√
c

→ �1−D/2 (5.3)

c

4
→ �−2−D. (5.4)

For instance equation (4.16) becomes

f
[�]
n+1(t) = N ′′′′′′

n+1

∫ +∞

−∞
ds exp

(
− 1

1 − �−D−2
s2

) [
f [�]

n (s + t�−D/2−1)
]�D

. (5.5)

Again for � = 21/D , we recover the HM recursion formula in the form given in equation (4.16).
In [51], Gallavotti has introduced equations that can be identified with the case � = 2. The
variable s in equation (5.5) plays a role similar to the Gaussian variable z� in his notations,
and the factor �D = 2D is reabsorbed in the definition of the potential. The limit � → 1 of
equation (4.10) will be discussed in section 9.

For � = 2 and D = 3, the value γ = 1.300 33 . . . was obtained numerically in [54].
This value is significantly different from the value γ = 1.299 1407 . . . obtained in [55, 56]



R58 Topical Review

for � = 21/3 and D = 3. For D = 3, the limit � → 1 was studied in [17, 57] with the
result γ = 1.299 124. The difference in the fifth digit is significant and was confirmed by
new calculations [19] (see also our section 9 below). This shows that again different values
of � correspond to different classes of universality and also that for a given � �= 21/D , the
extensions given in equations (5.1) and (5.5) are inequivalent. In addition, we see that the �

dependence is much weaker in equation (5.5) and the slope is apparently opposite to the slope
found for equation (5.1). We are lacking calculations at intermediate values but as far as we
can see, when � increases, γ increases.

6. Motivations, rigourous and numerical results

6.1. Motivations

Dyson’s hierarchical model was invented and reinvented several times with different
motivations that we briefly review. Dyson’s original motivation [5] was to construct models
more weakly coupled than the one-dimensional Ising models with long-range Hamiltonians
of the form

H = −J
∑
m<n

|n − m|−αφnφm. (6.1)

Dyson’s was trying to figure out if the model has an ordered phase when α = 2. Dyson
constructed a more general family of models where cl is replaced by bl in equation (3.1).
He proved several theorems concerning the infinite volume limit and the existence of phase
transitions at finite temperature that are discussed in the following subsection.

The fact that α = 2 is borderline can be anticipated by refining [58] Landau’s argument
for the absence of ordered phase in one dimension. If α < 2 and a system of size L has
an average magnetization µ > 0, then the cost in energy for flipping all the spins in a large
subsystem is of the order of L2−α . If α > 2, the cost should grow slower than ln(L) when
L is increased. On the other hand, there is of the order of L ways to choose the subsystem
and so the gain in entropy is of order kT ln L. Consequently if α > 2, the entropy dominates
and the free energy is decreased after flipping, which is incompatible with the possibility of
an equilibrium situation. On the other hand, if α < 2, there is no incompatibility. In the case
α = 2, both contributions are logarithmic and a more careful estimate is required. Thouless
[58] estimated that if the width of the magnetization distribution is proportional to L1/2, the
change in free energy is

�E = 2µ2J ln L − (1/2)kT ln L, (6.2)

and an ordered state seems possible for T small enough. If this occurs at some strictly positive
critical temperature Tc, then the magnetization changes abruptly to (kTc/4J )1/2 when the
temperature is lowered to Tc. This is called the Thouless effect. Later, the existence of an
ordered state at sufficiently low temperature for the model defined by equation (6.1) with
α = 2 was proved rigorously [59] as well as the Thouless effect [60].

Baker rediscovered the HM [6] in the context of the development of the RG ideas. His goal
was to construct models for which a simple recursion formula would be exact. He reinvented
Dyson’s HM and several variant of it. This has been partially reviewed in sections 4 and 5.

The hierarchical structure of the block variables can be naturally reconstructed using the
2-adic numbers (see section 14). At the end of the 1980s, physicists started reformulating
models of classical, quantum and statistical mechanics over the fields of p-adic numbers [61].
In particular, models of random walks over the p-adic numbers were considered [62–64], and
it was recognized that it was possible to reformulate the HM as a scalar model on the 2-adic
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fractions [65]. This reformulation was used in high-temperature (HT) expansions [66], helps
understanding the absence of certain Feynman graphs [3] and suggests ways to improve the
hierarchical approximation [21]. This is discussed in more detail in section 14.

6.2. Rigourous results

Dyson proved several theorems for the HM with

c = 22−α, (6.3)

where α is the same as in equation (6.1). With this notation it is clear that the ferromagnetic
interactions are weaker than for the model of equation (6.1). If we refer to figure 1, the relative
strength of the couplings between the 0th spin and its right neighbours are, from left to right,
1, 2−α, 3−α, . . . , 7−α for equation (6.1) and 2−α, 4−α, 4−α, 8−α, 8−α, 8−α, 8−α for the HM.
Griffiths has proved that for Ising models with ferromagnetic interactions, the averages of
two arbitrary spins variables are positive and increase with the strength of the ferromagnetic
interactions. Consequently, if one can prove that 〈φn

∑
m φm〉 blows up in the infinite volume

limit below some temperature for the more weakly coupled model, it will also blow up for
the other model. Dyson proved the existence of the infinite volume limit for α > 1 and that
there was a phase transition at finite temperature if and only if 1 < α < 2. In other words,
there is no phase transition at α = 2 for the HM, but this does not allow us to extend the
result to the more strongly coupled model of equation (6.1) that has indeed a phase transition
at finite temperature [59]. With the notations used in section 3, Dyson theorems mean that an
infinite volume limit exists for c < 2 (D > 0) and that a phase transition at finite temperature
occurs if 1 < c < 2 (D > 2).

The HM has been studied near D = 4 (c = √
2) using the ε expansion. The existence of

a nontrivial fixed point for ε small enough was proved [67]. The ε expansion was shown to
be asymptotic [68]. Many details regarding this approach can be found in [30]. Extensions
beyond the hierarchical model are discussed in [69].

The HM has also been studied directly at D = 3 (c = 21/3). The existence of a
nontrivial fixed point was proved for a large enough number of components [70]. Proofs
of the existence of the nontrivial fixed point in D = 3 for the one component model were
given in [49, 50, 54, 71, 72]. They also put exponential bounds on the fixed point in various
representations discussed in section 4. In particular, for real φ, some positive C and H� the
nontrivial fixed point of equation (4.2), the following bound holds:

|H�(φ)| < exp(−Cφ6). (6.4)

6.3. Numerical results

The critical and tricritical behaviour of the HM was investigated numerically in the presence of
a magnetic field and a staggered magnetic field [73]. The literature contains many numerical
estimates of the critical exponent γ for D = 3. The first calculation was done by Wilson.
The result reported in [6] is γ = 1.2991. In the following, unless specified differently, errors
of order 1 should be assumed for the last printed digit. Values when 2/D is a multiple of
0.05 are given in [74]. Interpolating linearly to D = 3, we obtained 1.302. Using the ε

expansion up to order 34 and a Borel resummation method, the value 1.2986 was obtained in
[75]. Analysis of the HT expansion [27, 28] yields 1.300(2) for D = 3. The value 1.299 141
can be obtained from a footnote in [54]. The value 1.299 14 was obtained in [76]. Using
two independent methods discussed in section 7, the value 1.299 140 730 159 was found in
[55, 56]. Less accurate calculations in the low-temperature phase were performed in [77] and
confirmed hyperscaling with three decimal points.
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7. Numerical implementation

7.1. Polynomial truncations

The recursion formula can be implemented numerically using numerical integration methods
in equations (4.2) or (5.1) as was done for instance in [3, 53, 73]. However, in the symmetric
phase, it seems easier to get very accurate results by using polynomial approximations in
forms based on the Fourier transform such as equations (3.12) or (4.16). This method
was justified rigorously in [54, 72], and used for numerical calculations for instance in
[14, 56, 76, 78]. For definiteness, we start with the recursion formula for R given in
equation (3.12). A finite-dimensional approximations of degree lmax has the form

Rn(k) = 1 + an,1k
2 + an,2k

4 + · · · + an,lmaxk
2lmax . (7.1)

This type of approximation can be justified in the context of the HT expansion and works
extremely well in the symmetric phase. We can reabsorb the inverse temperature β in k in
such a way that it does not appear anymore in the exponential in equation (3.12). This change
would then be compensated by a transformation an,l → βlan,l and the truncation at order k2lmax

would be sufficient to calculate exactly the HT expansion of R up to order βlmax . This technique
was used in [27, 28]. It was then realized (by accident) that large-order coefficients in the
HT expansion could be calculated in good approximation by using polynomial truncations
at order 10 times smaller than the HT order. The same method can be applied to numerical
calculations in the symmetric phase. The apparent convergence is studied empirically in [78].

With the polynomial truncation, the recursion formula equation (3.12) becomes a lmax-
dimensional quadratic map. After squaring R, we obtain a polynomial of order 2lmax in k2.
We could in principle truncate at order lmax; however, the derivatives in the exponential in
equation (3.12) will lower the degree and the terms of order larger than lmax will contribute to
the orders smaller than lmax after enough derivatives are applied. Of course, a truncation at
order lmax is made after all the derivatives are performed, but it was realized empirically [79]
that intermediate truncations reduce the accuracy of the calculation. The explicit algebraic
transformation reads

an+1,m =
∑2lmax

l=m

( ∑
p+q=l an,pan,q

)
[(2l)!/(l − m)!(2m)!](c/4)l[−(1/2)β]l−m∑2lmax

l=0

( ∑
p+q=l an,pan,q

)
[(2l)!/l!](c/4)l[−(1/2)β]l

. (7.2)

The initial conditions for the Ising measure is R0(k) = cos(k). For the LG measure, the
coefficients in the k expansion need to be evaluated numerically. The susceptibility at finite
volume and higher moments can then be obtained by rescaling the coefficients, for instance,

χ(2)
n = −2an,1(2/c)n. (7.3)

7.2. Volume effects in the symmetric phase

When calculating the susceptibility at values of β slightly below βc, we spend about
−ln(βc − β)/ln(λ1) iterations near the fixed point. During these iterations, the round-off
errors are amplified along the unstable direction (see the following subsection). After that
the order of magnitude of the susceptibility stabilizes, and the corrections get smaller by a
factor c

2 at each iterations. At some point, all the recorded digits stabilize (irrespectively of the
numerical errors which occurred in the first stage described above). This gives the estimate
[78] for the number of iterations n(β, P ) to stabilize P digits (in decimal notations)

n(β, P ) =
(

D ln(10)

2 ln(2)

)
[P − γ log10(βc − β)]. (7.4)
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7.3. The eigenvalues of the linearized RG transformation

The critical exponents can be calculated by linearizing the RG transformation near the fixed
point R�(k) specified by the coefficients a�

l . We express the coefficients after n iterations in
terms of small variations about the fixed point

an,l = a�
l + δan,l . (7.5)

At the next iteration, we obtain the linear variations

δan+1,l =
lmax∑
m=1

Ml,mδan,m. (7.6)

The lmax × lmax matrix appearing in this equation is

Ml,m = ∂an+1,l

∂an,m

, (7.7)

evaluated at the fixed point.
Approximate fixed points can be found by approaching βc from below and iterating until

the ratio an+1,1/an,1 takes a value which is as close as possible to 1. The determination
of βc can be done by following the bifurcations in an+1,1/an,1 for sufficiently large n. When
β < βc, the susceptibility stabilizes at a finite value without subtraction and for n large enough,
an+1,1/an,1 → c/2. On the other hand, if β > βc, the unsubtracted susceptibility grows like
the volume and for n large enough, an+1,1/an,1 → c (until the polynomial truncation breaks
down).

The approximated fixed points obtained with this procedure depend on βc. Using their
explicit form which we denote by R�(k, βc), one obtains a universal function R(k) by absorbing
β into k:

R(k) = R�(
√

βck, βc). (7.8)

It was shown that in very good approximation, R(k) is independent of the initial measure
considered [55, 56]. Numerically,

R(k) = 1. − 0.358 711 349 88k2 + 0.053 537 2882k4 − · · · . (7.9)

This function is related to the fixed point fKW(s2) constructed in [72] as follows by the relation

R(k) ∝ fKW

((
c − 4

2c

)
k2

)
. (7.10)

Extremely accurate values of the Taylor coefficients of fKW can be found in the file approx.t
in [72]. The constant of proportionality is fixed by the condition R(0) = 1. The relation with
the nontrivial fixed point f � of equation (4.16) is f �(it) = fKW(−t2).

The first six eigenvalues of Ml,m from [56] are given in table 2.
Using γ = ln(2/c)/ ln λ1 and �s = −ln λ2/ln λ1 from section 2, we obtain

γ = 1.299 140 730 159 (7.11)

�s = 0.425 946 858 988. (7.12)

These estimates of the exponents were in agreement [56] with those obtained from fits of
numerical data near criticality based on the parametrization of equation (2.26) with 12
significant digits for γ and 6 significant digits for �s . These fits also provide the non-universal
amplitudes.
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Figure 2. U(φ) defined in equation (7.13) (solid line); the subtracted potential U(φ) − (c/(2(2 −
c)))φ2 (dotted line).

Table 2. The fist six eigenvalues of the linearized RG transformation

n λn

1 1.427 172 478 177 59
2 0.859 411 649 182 006
3 0.479 637 305 387 532
4 0.255 127 961 414 034
5 0.131 035 246 260 843
6 0.065 488 493 129 8533

7.4. The critical potential

It is possible to Fourier transform numerically R(k) for a not too large value of the conjugate
variable φ. The result is that apparently the Fourier transform is a positive bell-shaped function
with only one maximum at φ = 0. We define

U(φ) ≡ −ln R̂(φ), (7.13)

and we obtain an apparently convex function with only one minimum shown as the solid line
in figure 2. In order to compare with calculations done with the Hn formulation, we need to
subtract A�φ2 from this function. Since we have removed the β dependence by reabsorbing it in
the definition of k, we must calculate A� with β = 1. Subtracting (c/(2(2−c)))φ2 � 0.851φ2

from the rescaled potential then becomes a double-well potential with minima at φ � ±1.688.
This is illustrated in figure 2. This explains that figures with a minimum away from the origin
appear in [32, 73].

It should be emphasized that U(φ) is a rescaled potential and not the effective potential.
The relationship between the two can be worked out from equations (3.10) and (3.11).
Assuming we are exactly at the nontrivial fixed point, W remains R̂(φ). One then obtains

Z ∝ R�(−iJ (4/c)nmax/2), (7.14)

and

�Veff(φc) = U(φcc
nmax/2). (7.15)

This result can be interpreted in the following way: at the fixed point, the only scale in
the problem is the size of the system and all the quantities scale with it according to their
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dimension. If we perform Taylor expansions in equations (7.14) and (7.15), we see that
when nmax → ∞, all the coefficients of Z blow up and the coefficients of φ2r

c blow up if
r > D/(D − 2). In the same limit, the coefficients of φ2r

c tend to zero if r < D/(D − 2). The
limiting case corresponds to rc = D/(D − 2) where the coefficient is volume independent.
For instance for D = 4, rc = 2 and for D = 3, rc = 3 which corresponds in both cases to the
marginal direction in perturbation theory. It should however be noted that if we work at finite
φc, we are in fact probing U at large value of its argument and the Taylor expansion may not
be convergent (the radius of convergence should be determined by the complex zero of R̂(φ)

closest to the origin). The above determination of rc implies that

U(φ) ∝ |φ|2D/(D−2) = |φ|D/xh for |φ| → ∞. (7.16)

For D = 3, the φ6 behaviour is compatible with the rigourous bound of equation (6.4).
Equation (7.16) can be obtained from the scaling hypothesis discussed at the end of

section 2.2. First, we find from equation (7.14) that

�DG[J ] = −ln(R�(−iJ �(D+2)/2)) + constant, (7.17)

which implies that for large values of |J | and |φ|,
G[J ] ∝ |J |2D/(D+2) = |J |D/Yh , (7.18)

and

|φ| ∝ |J |(D−2)/(D+2). (7.19)

Combining the two above equations and the Legendre transform, we recover equation (7.16).

7.5. The low-temperature phase

The calculation in the low-temperature phase requires the introduction of a constant external
magnetic field coupling linearly to φn. Since

Wn(φn,H) ∝ Wn(φn) eHφn, (7.20)

after Fourier transforming and rescaling one obtains [77]

Rn(k + iH(4/c)n/2)

Rn(iH(4/c)n/2)
=

∞∑
q=0

(−ik)q

q!
〈(φn)

q〉n,H (c/4)qn/2. (7.21)

The connected Green’s functions can be obtained by taking the logarithm of this generating
function. The average are understood at non-zero H. In order to observe the magnetization, it
is essential to take the infinite volume limit before taking the limit H → 0. For any non-zero
H, no matter how small its absolute value is, one can always find an n large enough to have
|H(4/c)n/2| 
 1. The nonlinear effects are then important and linearization does not apply.
It was checked [77] that when such an n is reached, the value of the χ(q) stabilizes at an
exponential rate. One can then, first extrapolate at infinite volume for a given magnetic field,
and then reduce the magnetic field in order to extrapolate a sequence of infinite volume limits
with a decreasing magnetic field, towards the zero magnetic field.

In the following, we use the notation

χ(q) ∝ (β − βc)
−γq , (7.22)

for the leading exponent. It is customary to use the notation γ1 = −β, but we avoided it
here because of a possible confusion with the inverse temperature. Obviously γ2 = γ . In the
symmetric phase and for q even, we have the order of magnitude estimate

χ(q) ≈ 2−n�

(4/c)qn�/2, (7.23)
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with n� defined as in section 2 by the relation |β − βc|λn� = 1. Eliminating n� and using the
expression of γ as in section 2, we obtain

γq = γ [(q/2) ln(4/c) − ln 2]/ ln(2/c). (7.24)

In the case D = 3(c = 21/3), this becomes

γq = 1.299 140 73 . . . × (5q − 6)/4. (7.25)

We will show below that this equation is a particular case of a more general relation that
follows from the scaling hypothesis. In [77], the following numerical results were obtained:

γ1 = −0.3247

γ2 = 1.2997

γ3 = 2.9237,

(7.26)

which agree with three significant digits with the prediction of equation (7.25).
Equation (7.24) follows from a slightly stronger form of the scaling hypothesis. The basic

scaling relation of equation (2.27) is satisfied if we further assume that

Gs(t, J ) = tDνg(J/t�g ), (7.27)

for a well-behaved function g and with the gap exponent

�g ≡ Yh

Yt

= (D + 2 − η)ν

2
. (7.28)

By construction, the argument of g is invariant under the rescaling of equation (2.27). Each
derivative with respect to J brings down a factor t−�g . This implies that

γq = −Dν + q�g. (7.29)

In the case of the HM, ν = γ /2 and �g = (D + 2)γ /4 and we recover equation (7.25) for
D = 3. For the HM in arbitrary dimension, we could also write

γq = −D − (q/2)(D + 2)

Yt

. (7.30)

7.6. Practical aspects of the hierarchy problem

In the absence of wavefunction renormalization, the square of the renormalized mass mR in
units of the UV cutoff � can be defined as the inverse susceptibility. Keeping the mass small
when the cutoff increases requires a large susceptibility. In the calculations discussed above,
a large susceptibility is obtained by fine-tuning β. However, we can also keep β = 1 and fine
tune another parameter such as the bare mass mB in a Landau–Ginzburg potential. In this
case, we have

mR/� ∼ (|mBc − mB |/�)γ/2, (7.31)

In four dimensions, γ = 1 and if we take m = 100 GeV, a typical electroweak scale, and
� = 1019 GeV of the order of the Planck mass, we need to fine tune mB with 34 digits. This
is often called the hierarchy problem and seen as an argument against fundamental scalars
[80]. The main virtue of the RG approach is to separate the relevant and irrelevant parts of
the information contained in the partition function. At each iteration, the information relevant
to understand the large distance behaviour is amplified, while the rest of the information is
discarded according to its degree of irrelevance. However, if some ‘noise’ is introduced in this
process, for instance, as round-off errors in the calculation, the error in the relevant direction
will be amplified too. This may lead to situations where the amplified errors wipe out the final
result. In the case of the HM, the problem can be solved by increasing the arithmetic precision
in the implementation of equation (7.2). This is documented in [81].
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8. Perturbation theory with a large field cutoff

8.1. Feynman rules and numerical perturbation theory

An attractive feature of the HM is that it is possible to calculate perturbative series to large
order by blockspinning numerically, order by order in an expansion parameter, for instance
λ for a λφ4 perturbation. This method can be used analytically to reconstruct the Feynman
rules [16, 82]. In practice, the diagrammatic expansion is much more complicated than the
numerical method. However, for comparison with calculations based on diagrams, it is useful
to know the Feynman rules.

For an initial measure of the form

W0(φ) = exp
(−(

A� + 1
2m2

B

)
φ2 − λφ4

)
, (8.1)

we obtain the usual Feynman rules for a λφ4 theory with the following replacements:∫
dDk

(2π)D
→

∞∑
n=0

2−n−1 1

k2 + m2
B

→ 1

k2(n) + m2
B

, (8.2)

with k2(n) = 2A�(c/2)n. The interpretation is quite simple; the integral over the momenta
is replaced by a sum over momentum shells similar to those introduced by Wilson [3, 32].
After one RG transformation the UV cutoff � is lowered to �/� = 2−1/D�, and the volume
of momentum space in D dimension is reduced by a factor 2. The volume of the 0th shell is
1/2, the volume of the 1st shell is 1/4 etc. . . . Similarly, (c/2)n = �−2n represents the square
of the momentum in the nth shell.

8.2. Perturbation theory with a large field cutoff

It is well known [83] that perturbative series are in general divergent. Their zero radius of
convergence is due to large field configurations [84, 85]. However, the large field configurations
have very little contributions to observables involving a few fields such as the magnetic
susceptibility or the four-point function.

This point was realized by the author in two different circumstances. The first is quantum
mechanics, quantum field theory in 1+0 dimensions, where the field variable is usually denoted
by x. A large field cutoff can be implemented by imposing that the potential becomes
+∞ at x = ±xmax. If the field cutoff xmax is large enough, the effects on the low energy
levels are exponentially small [86–88]. The second circumstance is the HM [78]. The
numerical procedure described in section 7 is based on polynomial approximations and is
purely algebraic; however, we need to input R0(k). So we need to do one integral numerically
to start, namely the inverse Fourier transform of equation (3.11). At the end, we need to
Fourier transform if we want to extract the effective potential. In doing the initial integral
numerically it is convenient to introduce a large field cutoff and then monitor the effect of this
cutoff when it is increased. It is clear that for local measures that decay sufficiently fast, the
effect is exponentially small for observables involving a few fields.

On the other hand, the large order of the perturbative series involves averages of large
powers of the field and is sensitive to the field cutoff. This is illustrated in figure 3 where the
perturbative coefficients of the zero-momentum two-point function for D = 3 are plotted in
units of their value at infinite field cutoff as a function of the field cutoff. One can see that for
a fixed large field cutoff φmax, some low-order coefficients may be close to their asymptotic
values, a few coefficient may be in the crossover region and most coefficients are much smaller
by several order of magnitude than their asymptotic value. These three regimes are reminiscent
of the three regimes encountered when calculating renormalization group flows between two
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Figure 3. First nine perturbative coefficients (left to right) for the two-point function in unit of
their infinite field cutoff value, as a function of the field cutoff φmax.

fixed points [38, 79, 89, 90]. Note also that the shape of the transition seems universal as in
the anharmonic oscillator case [88, 91].

This suggests a connection between the crossover observed in the behaviour of the
perturbative coefficients and the crossover behaviour of the RG flows. When we construct
the RG flows starting near the Gaussian fixed point and let them evolve towards the high-
temperature fixed point, it should be possible to describe the first iterations using the Gaussian
scaling variables (see section 10). On the other hand, after a large number of iterations, the
scaling variables of the HT fixed point are the relevant ones. If we use regular perturbation
theory, we expect that it will be impossible to find a region where the two expansions are valid
due to the zero radius of convergence of the weak-coupling expansions. On the other hand, if a
field cutoff is introduced, the weak series have a nonzero radius of convergence and the direct
calculations of critical amplitude as in [79] might be possible. A generic feature that we then
expect is that if we calculate the perturbative coefficients with a field cutoff, by blockspinning,
the first coefficients should stabilize quickly, while the large order in perturbation should
stabilize after more iterations. This property was verified in [91].

8.3. Improved perturbative methods

The field cutoff significantly alter the accuracy of the perturbative series. This is illustrated in
figure 4 where the accuracy of perturbation theory for the two-point function at various order
is shown in regular perturbation theory and with a particular field cutoff. The figure makes
clear that at sufficiently large coupling, the modified series becomes more accurate than the
regular series. It is also clear that for a given field cutoff, the accuracy peaks near a specific
region of the coupling. It is likely that at a given coupling, it is possible to find an optimal
field cutoff that can be determined approximately using a strong-coupling expansion as in a
simple integral discussed in [92].

8.4. Large field cutoff in ERGE

Understanding and controlling the large field configurations is an issue that goes beyond the
scope of perturbation theory. In particular, it appears in the context of the RG flows of the
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Figure 4. Number of significant digits obtained with regular perturbation theory at order
1, 3, 5, . . . , 15 (solid, turning clockwise with order) and with φmax = 2 (dash line), at order
1, 3, . . . , 11 (moving up with order) as a function of λ, for the two-point function of the HM.

effective actions [93]. It was noted [94] that the introduction of a background field suppresses
large field contributions to the flows. We should also mention functional generalizations of
the Callan–Symanzik equation [95, 96] where a running bare mass controls large fluctuations.

9. Relation with the ERGE in the LPA approximation

9.1. Polchinski equation in the LPA

As explained in the first sections, the RG transformation of the HM can be reduced to a simple
integral equation because of the very special form of the non-local interactions. In general,
the real space RG seems difficult and one may prefer a formulation in terms of the Fourier
transform of the fields. An UV cutoff can be introduced and lowered in variety of ways (sharp
cutoff or smooth cutoff functions, . . .). An effective action can be obtained by lowering the
cutoff, or varying a parameter in the cutoff function in such a way that the large momentum
components of the fields get more integrated. The derivative of the effective action with
respect to the cutoff (or a related parameter) can then be expressed in terms of an integral
over the momenta of a function of the action and its derivatives with respect to the Fourier
transform of the fields. This equation is exact and is often called an exact renormalization
group equation (ERGE). This idea was introduced and developed in [4, 11, 97, 98] and has
generated a large interest that is still ongoing. Progress has been reviewed for instance in
[8–10, 99, 100]. An ERGE can be rewritten as an infinite set of coupled partial differential
equations. A simple starting point is to neglect the evolution of the terms in the effective
action involving derivatives. This is called the local potential approximation (LPA).

A simple equation that can be written in this approximation for an ERGE with a smooth
cutoff function is [98]:

∂V

∂t
= DV +

(
1 − D

2

)
φ

∂V

∂φ
−

(
∂V

∂φ

)2

+
∂2V

∂φ2
, (9.1)

where V (t, φ) is the effective potential and t is a parameter that increases when the cutoff
decreases.
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9.2. Infinitesimal form of Gallavotti’s recursion formula

We now consider the extension of Gallavotti’s recursion formula equation (4.10). We introduce
the notations

Gn(φ) = e−V (�,φ) (9.2)

Gn+1(φ) = e−V (�/�,φ). (9.3)

In order to take the limit � → 1, we need to fix the variance of the Gaussian weight and the
overall normalization. We rewrite the extension of equation (4.10) for an arbitrary � with a
Gaussian weight parametrized in terms of a function ρ(�) as

exp(−V (�/�, φ)) =
∫ +∞

−∞

dξ√
πρ(�)

exp

(
− ξ 2

ρ(�)
− �DV (�, �1−D/2φ + ξ)

)
. (9.4)

We require that ρ(1) = 0 and ρ ′(1) �= 0, otherwise ρ is arbitrary. In [13], we have
ρ(�) = 2(� − 1).

The factor (πρ(�))−1/2 guarantees that when � → 1, the two sides of equation (9.4) are
equal. We now write � = 1 + δ and expand in δ. As mentioned, the terms of order 0 cancel.
Terms of order δ1/2 appear but become zero after integration over ξ . Equating the terms of
order δ, we obtain

−�
∂V

∂�
= DV +

(
1 − D

2

)
φ

∂V

∂φ
− ρ ′(1)

4

[(
∂V

∂φ

)2

− ∂2V

∂φ2

]
. (9.5)

If we write � = e−t and change the φ scale in order to get rid of the factor ρ ′(1)

4 , we recover
equation (9.1).

It should be pointed out that despite the fact that the differential equation comes as the
coefficient of the order δ in the expansion of equation (9.4), equation (9.5) is not a linearization
of equation (9.4). Indeed, when we reabsorb ρ in the integration variable ξ , we introduce a
term of order

√
ρ in the argument of the exponential. The terms that survive integration are

quadratic in
√

ρ, namely the second derivative of u and the obviously nonlinear square of the
first derivative of u. This point was not fully understood in [18].

Note also that the Gaussian fixed point corresponds to V = 0. The problem of finding the
eigenvalues of the linearized RG transformation reduces to a time-independent Schrödinger
problem. The φ∂/∂φ term can be eliminated by minimal substitution, introducing a φ2 term,
and the problem can be mapped into the problem of finding the eigenvalues of an harmonic
oscillator.

9.3. The critical exponents of Polchinski’s equation

A related equation is the so-called Polchinski equation. It can be written for N components as
[101]:

∂u

∂t
= 2y

N
u′′ +

(
1 +

2

N
+ (2 − d)y − 2yu

)
u′ + (2 − u)u, (9.6)

with y = �φ · �φ, u = 2V ′ and the prime denotes derivatives with respect to y. This equation
can be derived [101, 102] from an ERGE due to Polchinski [11] using the LPA. For N = 1, one
can see that it follows from equation (9.1), by re-expressing it in terms of y and its derivatives
and taking the derivative with respect to y of the resulting equation. Equation (9.1) is also
obtained as the LPA of an ERGE due to Wilson [8]. The exponents were calculated in [101].
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In particular for N = 1, they found γ = 1.2992 which is close to the HM value. A more
precise value γ = 1.299 12 was obtained in [17].

In addition, Litim [15, 57, 103] proposed an optimized ERGE and suggested [93, 104]
that it was equivalent to the Polchinski equation in the local potential approximation. The
equivalence was subsequently proved by Morris [105]. The value of γ for the optimized ERGE
[57] in the case N = 1 is 1.299 124 and differ by 2 in the fifth decimal from the HM. More
recently, [19] the calculations using the optimized ERGE and Polchinski equation were both
repeated with more accuracy and compared. The numerical difference between the exponents
of the two (analytically equivalent) formulations was reduced to 10−14. Their final result is
γ = 1.299 123 547 7613 which confirms the non-equivalence with the HM. This question is
also discussed for N > 1 in section 13.

9.4. Infinitesimal form of Wilson approximate recursion formula

The infinitesimal form of Wilson approximate recursion formula can be derived by following
the same steps as for Gallavotti’s recursion formula. First, we write Hn[φ] = exp(−Q(φ)).
We then use the arbitrariness of the scale of the fluctuations ξ as previously. The only difference
is that the term of order

√
δ disappears from

Q((1 + δ)1−D/2φ +
√

δξ) + Q((1 + δ)1−D/2φ −
√

δξ). (9.7)

Consequently, there seems to be no (∂Q/∂φ)2 term in the final equation. This point was also
noted in [36]. This suggests that the limit � → 1 is Gaussian (γ = 1). In [53], a numerical
calculation of γ was done for values of � = 2ζ . ζ = 1 corresponds to Wilson’s case while
ζ = 1/3 corresponds to the HM. The limit we are interested in for the infinitesimal form is
ζ → 0. Unfortunately, in this limit, the numerical procedure used in [53] becomes unstable
because the errors in the integration routine become more important as we need to iterate more
times the basic recursion formula. Figure 1 in [53] indicates that γ keeps increasing as ζ

decreases. The last data point is for ζ = 0.3. For smaller values of ζ , large errors bars develop
as can be seen by repeating the calculation at closely chosen values of ζ . For instance near
ζ = 0.15, we found values of γ as high as 1.34 and as low as 1.28. This calculation should be
repeated with more accurate integration methods.

9.5. Finite time singularities

It has been argued that some ERGE in the LPA have finite time singularities [106]. This is not
surprising given that the solutions of the fixed point equation for equation (9.6) are generically
singular. More precisely, if we assume that ∂u/∂t = 0, we obtain a second-order differential
equation for u. The solutions blow up at finite y for generic ‘initial’ conditions at y = 0.
This means that the derivative of the potential becomes singular at a finite value of the field.
It has been shown numerically [101] that regular solutions can be obtained for special initial
values using the shooting method and that these solutions correspond to the nontrivial fixed
point obtained with other formulations. Rigourous results concerning the existence of global
stationary solutions of equation (9.4) can be found in [13].

On the other hand, the possibility of having finite time singularities in Monte Carlo RG
calculations for nearest neighbour models is controversial [107, 108]. More generally, these
reviews question the existence of renormalized or effective Gibbs measures defined by certain
RG procedures.

For the HM with the polynomial approximation discussed in section 7, singularities after
a finite number of iterations cannot appear (as they cannot appear for a finite-dimensional
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quadratic map). More generally, it seems possible to prove the boundedness of Hn or Gn

(defined in section 4), for finite n, for a large class of initial functions.

9.6. Improvement of the LPA

The improvement of the LPA for ERGE as a derivative expansion is a well-developed subject
[8–10, 100]. However, progress is still needed in order to get estimates of the exponents
which can compete in accuracy with the best methods available [35]. It is possible that the
basic differential equations for the effective potential and the coefficients of terms involving
derivatives of the fields could be worked backward, at finite �, in order to produce a set of
manageable coupled integral equations. The improvement of the hierarchical approximation is
discussed with completely different methods in section 14. This could lead to � → 1 equations
that could be in turn compared with the existing ones. We hope that some communication
between the two approaches will be developed in the future.

10. The nonlinear scaling fields

10.1. General ideas and definitions

In the study of ordinary differential equations, a standard method [109] to go beyond the
linearized approximation near a fixed point consists in constructing new coordinates where
the equations become linear. In the context of the RG method, these new coordinates are
called the nonlinear scaling variables (or scaling fields) and were first introduced by Wegner
[31, 110].

10.2. The small denominator problem

Rectification procedures are usually plagued with the ‘small denominator problem’ initially
encountered by Poincaré in his study of perturbed integrable Hamiltonians [111]. In the RG
case, this question needs to be discussed for each fixed point separately. To the best of our
understanding, for the HM in D = 3, the problem can be completely avoided (but in a non-
obvious way) for the HT fixed point, it is not present for the nontrivial fixed point and it is
essential to generate logarithmic corrections to the scaling laws near the Gaussian fixed point
[31, 112].

In the rest of this section, we will discuss in detail the case of the scaling variables
associated with the HT fixed point and the nontrivial fixed point. Later we show that
they can be combined in order to calculate non-universal critical amplitudes. The way the
small denominator problem can be avoided for the scaling variables of the HT fixed point is
interesting. At first sight, the construction seems impossible for D = 3 and more generally for
rational values of D, because some of the denominators are exactly zero. A numerical study in
D = 3 showed [113] that for all zero denominators considered, a zero numerator miraculously
appears. Explicit calculations in arbitrary dimensions and general arguments explaining why
it should work to all orders were given in [114] and are summarized in subsection 10.5.

10.3. The linear scaling variables of the HT fixed point

As explained in section 7, the RG transformation in the symmetric phase can be approximated
very accurately in terms of a quadratic map in a (lmax)-dimensional space

an+1,l = un,l

un,0
, (10.1)
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with

un,σ = �µν
σ an,µan,ν, (10.2)

and

�µν
σ = (c/4)µ+ν (−1/2)µ+ν−σ (2(µ + ν))!

(µ + ν − σ)!(2σ)!
, (10.3)

for µ + ν � σ and zero otherwise. As in ‘relativistic’ notations, the Greek indices µ and ν go
from 0 to lmax, while Latin indices i, j go from 1 to lmax. Repeated indices mean summation
unless specified differently. With the normalization of equation (10.1), an, 0 = 1 for any n
and is not a dynamical variable. For small departure from the HT fixed point δan,i , the linear
RG transformation reads

δan+1,i � Mj

i δan,j , (10.4)

with

Mj

i = 2�
j0
i = 2

( c

4

)j
(

−1

2

)j−i
(2j)!

(2i)!(j − i)!
, (10.5)

for i � j and zero otherwise.
M is of upper triangular form and the spectrum is given by the diagonal elements

λ̃(r) = 2(c/4)r = �D−r(D+2) (10.6)

in agreement with [30]. Note that the quantity in the exponent of � also appears in the exponent
γq when q = 2r in equation (7.30). The tilde refers to the HT variables, eigenvalues etc. . . in
order to avoid confusion with the same quantities for the nontrivial fixed point. As we assume
c < 2 in order to have a well-defined infinite volume limit (see section 6), all the eigenvalues
are less than 1 and the fixed point is completely attractive. As r increases, the eigenvalues
decrease and become more irrelevant. Equation (10.6) has a simple interpretation: 2 stands
for the volume increase and the (c/4)r for the rescaling of the 2r th power of the sum of the
fields, which has a dimension aD/2+1 in lattice spacing units, when the volume element aD is
properly included, and of course assuming η = 0. The eigenvalues in equation (10.6) can also
be seen in equation (7.23)

We call R the matrix of right eigenvectors:

Mi
lRr

i = λ̃(r)Rr
l , (10.7)

(with no summation over r). For convenience, the columns ofR are ordered as the eigenvalues.
We introduce the linear coordinates h̃l :

an,l = Rr
l h̃n,r , (10.8)

and which transform as

h̃n+1,r � λ̃(r)h̃n,r (10.9)

in the linear approximation. The matrix Rr
i and its inverse are also upper triangular and h̃l is

of order βl , just as an,l is. We fix the normalization of the right eigenvectors in R in such a
way that all the diagonal elements are 1. This guarantees that h̃l = an,l + O(βl+1). In [114], it
was proved that for the upper diagonal elements (j > i),

Rj

i =
( −c

8 − 2c

)j−i (2j)!

(2i)!(j − i)!
, (10.10)

and that

(R−1)
j

i = (−1)j−iRj

i . (10.11)
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Note that because of the HT selection rules (i.e., the upper triangular form of the matrices),
the matrix elements do not depend on the choice of lmax.

It is easy to rewrite the exact RG transformation in the h̃l coordinates. Starting with the
basic equation (10.1), we replace a0 by 1 and al by Rp

l h̃p, we obtain a recursion formula of
the form

h̃n+1,l = λ̃(l)h̃l + �
pq

l h̃ph̃q

1 + 2�
p0
0 h̃p + �

pq

0 h̃ph̃q

, (10.12)

with coefficients calculable from equation (10.3). For instance,

�
pq

l = (R−1)l
′
l �

p′q ′
l′ Rp

p′Rq

q ′ .

Pursuing the relativistic analogy, upper roman indices transform with R and the lower ones
with (R)−1.

10.4. The nonlinear scaling variables of the HT fixed point

We now explain how to re-express the linear variables h̃l in terms of the nonlinear scaling
variables ỹl for which the approximate multiplicative transformation of equation (10.9) is
assumed to be exact

ỹn+1,r = λ̃(r)ỹn,r . (10.13)

If we use ln(yl) as our new coordinates, the RG flows become parallel straight lines. All the
dynamics is then contained in the mapping. The monotonicity of these functions suggests a
possible connection with field theory entropy [115]; however the regularity near other fixed
points may be an issue.

As in [31, 110], we introduce the expansion

h̃l = ỹl +
∑

i1,i2,...

sl,i1i2...ỹ
i1
1 ỹ

i2
2 , . . . , (10.14)

where the sums over the i’s run from 0 to infinity in each variable with at least two non-zero
indices. In the following, we use the notation i for (i1, i2, . . .). More generally, such vectors
will be represented by boldface characters. The unknown coefficients sl,i in equation (10.14)
are obtained by matching two expressions of h̃+1,l , one obtained from the RG transformation of
the hl given in equation (10.12), the other obtained by evolving the scaling variables according
to the exact multiplicative transformation equation (10.13). The matching conditions can be
written as

h̃n+1,l(h̃n(ỹ)) = h̃l(λ̃1ỹn,1, λ̃2ỹn,2, . . .), (10.15)

and yield the conditions

sl,i = Nl,i

Dl,i
, (10.16)

with

Nl,i =
∑
j+k=i

(
−�

pq

l sp,jsq,k + sl,j

∏
m

λ̃
jm

(m)2�
p0
0 sp,k

)
+

∑
j+k+r=i

sl,j

∏
m

λ̃
jm

(m)�
pq

0 , sp,ksq,r

(10.17)

and

Dl,i = λ̃(l) −
∏
m

λ̃
im
(m). (10.18)
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For a given set of indices i, we introduce the notation

Iq(i) ≡
∑
m

immq. (10.19)

One sees that I0 is the degree of the associated product of scaling variables and I1 its order in
the HT expansion (since yl is also of order βl). Given that all the indices are positive and that
at least one index is not zero, one can see that if j+k = i then Iq(j) < Iq(i) and Iq(k) < Iq(i).
Consequently, equation (10.17) yields a solution order by order in I0 or in I1 (since the rhs
always contains sl,i of lower order in I0 and I1) provided that none of the denominators Dl,i

are exactly zero.
We can now rewrite the denominators as

Dl,i = 2
( c

4

)l

− 2I0(i)
( c

4

)I1(i)
. (10.20)

The parametrization of c in equation (3.23) implies that a zero denominator appears when

D − l(D + 2) = DI0(i) − (D + 2)I1(i). (10.21)

Given that the Iq are integers, this can only occur at some rational values of D. Ignoring
temporarily this set of values, we can say that for generic values of c, the denominators are
not zero. In the spirit of dimensional regularization, we can perform, order by order in the
HT order I1, the construction of the sl,i for a generic value of c and discuss the limit where c
takes some special value at the end of the calculation. Since the linear problem is completely
solved and we may assume I0(i) > 1. In addition, since both hl and yl are of order βl , we
need I1(i) � l. At lowest nontrivial order in β, we have Il(i) = l, and it has been shown
[114] that, at that order, sl,i has only an apparent pole of order l at c = 0 exactly cancelled by
a zero of the same order in the numerator. If I1(i) > l, we can write

Dl,i = 2
( c

4

)l

(ccrit)
l−I1(i)Tl,i, (10.22)

with

Tl,i = (
c
I1(i)−l
crit − cI1(i)−l

)
, (10.23)

and

ccrit = 4 × 2(1−I0(i))/(I1(i)−l). (10.24)

The only poles that we need to worry about are those where 0 < ccrit < 2. An inspection [114]
of the 175 terms up to order β7 shows that all the poles at 0 < c < 2 were exactly cancelled
by zeros of the same order. Note that the maximally simplified rational expression for the sl,i

do have poles but at values of c outside of the range 0 < c < 2. A possible strategy for a proof
would be to show inductively that for each term with 0 < ccrit < 2, the cancellation occurs
and so the undesired poles do not propagate to higher order. Such an algebraic proof seems
difficult because the sl,i are rational expressions and the zeros at the numerator only appear
after factorization of sums of such terms. It seems nevertheless reasonable to conjecture that
sl,i have no poles 0 < ccrit < 2. If this conjecture is correct, dimensional regularization
provides a unique continuous expression for the coefficients for any c with 0 < c < 2, and the
model is formally ‘solvable’ using the recursion for the coefficients given by equation (10.17).
The conjecture implies that for any value of c in this interval, we can construct analytical
expression of an,l (which contains all the thermodynamical quantities) in terms of a0,l (which
depends on the initial energy density):

an,l = (R−1)rl h̃r

(
λ̃n

1 ỹ1(a0), λ̃
n
2 ỹ2(a0), . . .

)
. (10.25)
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We will see that the initial values of y(a0) have a simple interpretation given in
equation (10.41).

It is also possible to express the nonlinear scaling variables in terms of the linear variables.
Writing

ỹl = h̃l +
∑

i

rl,i

∏
m

h̃im
m , (10.26)

we can determine order by order the unknown coefficients rl,i of the expansion for generic
values of c.

10.5. Argument for the cancellation to all orders

The generating function of the connected parts of the average values of the total field reads

ln(Rn(k)) = ac
n,1k

2 + ac
n,2k

4 + · · · , (10.27)

with

ac
n,l =

∑
i:I1(i)=l

(−1)I0(i)−1(I0(i) − 1)!
∏
m

aim
m

im!
. (10.28)

We are working in the HT phase and that we do not need to subtract powers of the
magnetization. After a suitable rescaling of k described in subsection 7.1, we have

ac
n,l = (−β)l

1

2l!

( c

4

)ln

〈(φn)
2l〉c. (10.29)

We assume that the initial values a0,l are such that

lim
n→∞ χ(q)

n = χ(q) (10.30)

is finite. In other words, we assume that β < βc and that all the χ(q) are finite. As explained in
section 6, this statement can be proved rigorously for a Ising measure. From equation (10.29),
it is then clear that for n large enough, we have the leading scaling

ac
n,l ∝

(
2

( c

4

)l )n

= λ̃n
(l). (10.31)

This suggests a simple relationship between ac
n,l and ỹn,l . Using the Möbius inversion formula

[116, 117], it has been shown that

ac
l = ỹl + O(βl+1). (10.32)

Equation (10.32) means that there are no nonlinear contributions of order βl to ac
l . For

instance, there are no y3
1 or y1y2 terms in ac

3. This is expected because the nonlinear terms of
order βl scale faster than yl , (assuming 0 < c < 2). By saying a term ‘scale faster’, we mean
that it goes to zero at a slower rate when n becomes large. In general, at each RG step, a term∏

m yim
m of order βl is multiplied by

2I0(i)
( c

4

)l

> λ̃(l) = 2
( c

4

)l

.

The strict inequality comes from the fact that for the nonlinear terms I0(i) > 1. It is thus clear
that nonlinear terms of order βl would spoil the HT scaling of equation (10.31) and contradict
the existence of a infinite volume limit.

For higher order terms, the sign of the denominator Dl,i introduced in equation (10.18)
tells us whether or not the term scales faster or slower than the linear term. With our
sign convention, c > ccrit(l, i), means Dl,i < 0 and the term spoils the HT scaling
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equation (10.31). Since the coefficients are rational functions of c, they cannot vanish
suddenly when c becomes larger than ccrit(l, i). Consequently, whenever 0 < ccrit(l, i) < 2,
the coefficient of the corresponding term is expected to vanish identically.

We have checked that this argument is consistent with our previous explicit calculations.
We have used equations (10.28), (10.8) and the already calculated coefficients in
equation (10.14) to calculate

ac
l = ỹl +

∑
i:I1(i)>l

tl,iỹ
i1
1 ỹ

i2
2 . . . , (10.33)

up to order 7. For all the 50 terms with 0 < ccrit < 2, the corresponding tl,i are identically
zero.

The existence of an infinite volume limit implies that the small denominator problem can
be evaded for any c such that 0 < c < 2. We have constructed the ac

l in terms of the al .
However, we could have proceeded directly, writing the ac

n+1,l in terms of the ac
n,l :

ac
n+1,l = Mk

l a
c
n,k +

∑
k+q�l

v
kq

l ac
n,ka

c
n,q + · · · . (10.34)

The coefficients v
kq

l and the higher order ones can be obtained by using the expansion of
equation (10.27) in the logarithm of equation (3.12) and expanding order by order in ac

n. The
series does not terminate. The linear transformation is the same as before because ac

l and al

only differ by nonlinear terms. Using

ac
n,l = Rr

l h̃
c
r , (10.35)

we obtain

h̃c
n+1,l = λ̃(l)h̃

c
n,l +

∑
k+q�l

w
kq

l h̃c
n,kh̃

c
n,q + · · · . (10.36)

We then introduce the expansion

h̃c
l = ỹl +

∑
i:I1(i)>l

sc
l,i

∏
m

ỹim
m , (10.37)

and obtain

sc
l,i = Nc

l,i

Dl,i
, (10.38)

with Nc
l,i given by a formula similar to equation (10.17), except that it does not terminate. A

detailed analysis shows that the two formulae have in common that the numerator depends
only on coefficients of strictly lower orders in β, and equation (10.38) can be used order by
order in β to construct the sc

l,i for generic values of c.
Since R−1 is upper triangular, we see from equation (10.35) that h̃c

l is equal to ac
l plus

terms which go to zero faster. Consequently, for large n, the leading scaling is

h̃c
n,l ∝ λ̃n

(l). (10.39)

Following reasonings used before, this implies that terms in the expansion equation (10.37)
that scale faster than yl for any 0 < c < 2 should have a vanishing coefficient. In other words,

0 < ccrit(l, i) < 2 ⇒ sc
l,i = 0.

Given the specific form of the sc
l,i given in equation (10.38), the h̃c

l have no poles for 0 < c < 2.
The ac

l being linear combinations of h̃c
l and the al being linear combinations of products of

ac
l , we conclude that the expansion of the al in terms of the scaling variables has also no poles

for 0 < c < 2.
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Again we see that there exists a unique continuous definition of the scaling variables that
can be used at particular values of c where the denominator is exactly zero. From a practical
point of view, the calculation at fixed c of the sc

l,i is easier than the calculation of the sl,i,
because no limit needs to be taken explicitly. The sc

l,i being rational function of c cannot be
zero everywhere except at isolated values. Consequently, we can set to zero the sc

l,i having
ccrit(l, i) < 2 even at values of c, where Dl,i = 0.

The initial values ỹ0 have a very simple interpretation. We know that ỹn,l is the only
leading term of ac

n,l when n becomes large. If at a given 0 < c < 2, a nonlinear term scales
exactly like ỹn,l , then by increasing c slightly (but keeping c < 2), we can make this term
dominant in contradiction with the existence of the infinite volume limit. Consequently,

lim
n→∞ λ̃−n

l ac
n,l = lim

n→∞ λ̃−n
l ỹn,l = ỹ0,l . (10.40)

From equation (10.29), we see that

ỹ0,l = (−β)l
1

2l!
χ(2l). (10.41)

Furthermore, [118] we can consider the χ(2l) as functions of the initial values a0,l . If we
now replace these initial values by the m-advanced values am,l , we find that χ(2l)(am,l) =
λ̃m

l χ(2l)(a0,l). In this sense, the infinite volume limit quantities χ(2l) can be seen as scaling
variables.

10.6. The nonlinear scaling variables of the nontrivial fixed point

The construction of the nonlinear scaling variables can be repeated verbatim [119] for the
nontrivial fixed point. However, unlike the HT case, all the calculations have to be performed
numerically. Starting from the basic quadratic map of equation (10.1), introducing new
coordinates that are zero at the nontrivial fixed point, re-expressing these coordinates as linear
combinations of the right eigenvectors and fixing the scale (for instance, by requiring that the
HT fixed point is located at (1, 1, . . .)), we obtain a RG transformation for the linear scaling
variables (denoted h) that can be written in the form

hn+1,r = λrhn,r + �
pq
r hn,phn,q

1 + �phn,p + �
pq

0 hn,phn,q

. (10.42)

As in the HT case, the first subscript refers to the number of iterations and the second is the
index of the variable.

As discussed in section 7, for D = 3 there is one and only one eigenvalue larger than 1.
We can express the linear scaling variables in terms of the nonlinear scaling fields (denoted
by y):

hn,r =
∑

i

tr,i
∏
m

yim
n,m, (10.43)

and proceed as before. One can also find expansions of the scaling fields in terms of the linear
variables, by setting

yn,r =
∑

i

ur,i

∏
m

him
n,m. (10.44)

The only potential problem comes from small denominators. In [119, 113], a partial numerical
survey of possible small denominators was done. The worse case found was λ9

2 � λ4 with
two parts in a thousand.

A major difference with the HT case is the existence of a relevant direction. Consequently,
y1 plays a very special role as a coordinate along the unstable direction. As y1 can be expressed
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in terms of the linear scaling variables which are themselves linear combinations of the original
coordinates a, we can have

y1(a) = 0 (10.45)

as the equation defining the stable manifold. Similarly, the unstable manifold in the a
coordinates corresponds to the one-dimensional trajectory a(y1, 0, 0, . . .). For practical
purpose, one can expand the linear scaling variables to large order in y1 and to low order
in a few irrelevant variables.

10.7. Convergence issues

Up to now, it has been shown that it seems possible to construct formal expansion of the linear
scaling variables in terms of the nonlinear scaling variables or vice versa, for the HT fixed
point or the nontrivial fixed point. This does not mean that these expansions define analytical
functions. In contrast, the existence of multiple fixed points suggests that these expansions
have at best a finite radius of convergence. Numerical experiments [119] testing the scaling
of the nonlinear scaling variables suggest that the two expansions have overlapping region of
convergence. This will be illustrated in subsection 11.3.

10.8. The scaling variables of the Gaussian fixed point

The eigenvalues of the parity preserving linearized RG transformation at the Gaussian fixed
point [30] are

λGj = 2c−j = �D−j (D−2) (10.46)

for j = 1, 2, . . . . The interpretation is simply the scaling of the parity invariant couplings in
g2jφ

2j interactions. For D � 4, there is only one relevant direction corresponding to the mass
term. For 2 < D < 4, there are at least two and at most a finite number of relevant directions.

This problem can be reformulated in term of the evolution operator of the harmonic
oscillator

H = p2

2m
+

mω2x2

2
, (10.47)

during a finite Euclidean time t = −iτ . The correspondence is c = exp(2ωτ) and
m = β(c − 1)/(2 − c) in h̄ = 1 units. The connection with the � � 1 + δ limit discussed in
section 9 is ωτ = δ(D − 2)/2.

There are many zero denominators in integer dimensions, e.g., λ1 = λ2
2 for D = 3. If

the numerators are not zero, one can modify [31] the situation by considering n-dependent
coefficients. This generates logarithmic corrections which are necessary. These can be
observed in the large order of the HT temperature expansion in [120]. Another possibility is
to use the idea of dimensional regularization [121] as already explained in the HT case. This
might help reinterpreting the connection between the 1/ε poles in the D = 4-ε regularization
and the logarithmic divergences in a cutoff regularization [122].

Practical constructions of the nonlinear scaling variables remain to be developed. As the
radius of convergence of perturbative series is zero it is not clear that the procedure would
work as in the two other cases. Modified perturbative methods where a cutoff in field space is
introduced [85, 88, 91] might work better.

We are not aware of any explicit construction of the scaling variables for the low-
temperature fixed point.
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Figure 5. A qualitative description of a RG flow starting near the Gaussian fixed point, passing by
the nontrivial fixed point and ending on the HT fixed point.

11. Interpolation between fixed points and critical amplitudes

11.1. Global RG flows

The critical amplitudes are in general non-universal, and their calculation requires that we go
beyond the linear approximation and interpolate among fixed points. In the rest of this section,
we consider mostly the flows from the nontrivial fixed point to the HT fixed point.

Given the success of field theoretical methods based on perturbation theory [23, 33, 34],
it would certainly be desirable to extend the construction of nonlinear scaling variables with
initial condition near the Gaussian fixed point. As explained in the previous section, this
construction of the nonlinear scaling variables remains to be done. The basic picture is that
the Gaussian fixed point is located on the stable manifold of the nontrivial fixed point and that
it is possible, for D < 4, to use the unstable directions of the Gaussian fixed point to reach the
nontrivial fixed point. For this reason, the Gaussian fixed point is often called the UV fixed
point and the nontrivial fixed point the IR fixed point. The situation is depicted in figure 5.

11.2. Critical amplitudes and RG invariants

In section 10, we have seen that the construction of the coordinates a in terms of the nonlinear
HT scaling variables provides a formal solution to the problem of the RG flows. However,
this is not the end of the story since it is not clear how accurate finite-order expansions can
be. Also the initial values were identified up to a factor (−β)r/2r! with the infinite volume
susceptibilities χ(2r), the very quantities that we would like to compute!

Indeed, our goal is to compute χ(2r) or equivalently ỹ0,r for initial conditions near the
nontrivial fixed point where it is easy to use the other scaling variables y. For simplicity, we
will assume that the initial conditions are exactly on the unstable direction and close to the
nontrivial fixed point:

y0,1 = u, y0,2 = 0, y0,3 = 0 . . . .

More complicated cases are discussed in [119]. Under a RG transformation, u → λ1u while
the HT nonlinear scaling variables transform multiplicatively according to equation (10.13).
From equations (7.23) and (10.6), we can rewrite

γ2r = − ln λ̃(r)

ln λ1
. (11.1)
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Figure 6. C1(u) defined in equation (11.4) versus u.

This implies that

Cr ≡ ỹn,r (yn,1)
γ2r , (11.2)

are n independent or in other words, RG invariant. These relations suggest that the two fixed
points are in some approximate sense dual [123] to each others. We can now rewrite the basic
quantities that we want to calculate as

ỹ0,r = ỹ0,r (y0,1)
γ2r (y0,1)

−γ2r = Cr(u)−γ2r . (11.3)

Constant Cr are not universal. They depend on the normalization choice for y, however,
equation (11.3) is independent of this choice. It is possible [28] to relate u to β − βc

for a particular model and consequently, calculating Cr provides an estimate of the critical
amplitudes. The remaining question is: can we calculate Cr?

11.3. Overlapping regions of convergence

In principle, the RG invariants Cr can be calculated for any n. In practice, low n calculations
fail because of the low accuracy of the HT expansion and large n calculations fail because of
the low accuracy of the expansion in the nontrivial scaling variables. The accuracy of the two
expansions in intermediate regions can be tested empirically by monitoring the stability of the
estimates of Cr . In figure 6, we have displayed

C1(u) = y1(h(hW(u))uγ , (11.4)

with the HT scaling variable y1(h) calculated up to order β11 and hW(u) calculated up to order
80 in u. The RG invariance only implies that C1(λu) = C1(u) (we remind that λ � 1.427). A
wide plateau is observed in figure 6 for 1 < u < 3, indicating good convergence properties in
overlapping regions. RG invariance only forces periodicity on a log scale, but apparently the
log-periodic oscillations are very small. They can be seen better in simplified models [28].
Log-periodic oscillation is discussed into more detail below in subsection 11.5.

11.4. Approximately universal ratios of amplitudes

Using the first lmax HT nonlinear scaling variables, it is possible to construct lmax −1 constants
of motion

Gr ≡ −(2r)!
ỹn,r

(−2ỹn,1)(r−1)(D/2)+r
. (11.5)
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These quantities are RG invariants. We can evaluate them at n = 0. Using equation (10.41),
we obtain

Gr = (−1)r+1 β
D
2 (1−r)χ(2r)

(χ(2))(r−1)(D/2)+r
. (11.6)

If the conjecture [124] that (−1)r+1χ(2r) > 0 is correct, then Gr > 0.
We now evaluate the universal ratio on the unstable direction of the unstable fixed point.

Calling Gr(u) the corresponding value, we have

Gr(λu) = Gr(u). (11.7)

Consequently, we have the Fourier expansion

Gr(u) =
∑

q

Ar,qu
iqω =

∑
q

Ar,q eiqω ln u, (11.8)

with

ω = 2π

ln λ1
. (11.9)

The function is clearly periodic in ln(u), and we call the oscillations due to the non-zero
Fourier modes ‘log-periodic’. The coefficients can be calculated as

Ar,q = 1

λ1

∫ λ1

1

du

u
u−iqωGr(u). (11.10)

The oscillatory terms are very small, as noted in [27, 28, 123], and we have the approximate
universal ratios

Gr(u) � Ar,0. (11.11)

These constants can be estimated using the methods discussed in subsection 11.3. The
smallness of the nonzero Fourier modes also applies the non-universal function Cl(u) discussed
in subsection 11.3.

11.5. More about log-periodic corrections

The possibility of log-periodic terms was first discussed in [32, 45]. They were identified
in the high-temperature expansion [27, 28] of the HM. The amplitudes A(2l)

per. are however
quite small, typically, they affect the 16th significant digit of the susceptibility, and it takes a
special effort to resolve them numerically. They are amplified [27, 28] by estimators of critical
exponents such as the extrapolated slope Ŝm designed [125] to remove subleading corrections
in estimation of the critical exponents at successive order in the HT expansion. This prevents
an accurate determination of γ from HT expansion [27, 28].

Limit cycles often appear in two-dimensional ordinary differential equations. However,
their stability in higher dimensions is an issue debated in the dynamical system community.
For instance, the Landau scenario for the onset of turbulence, based on the appearance of limit
cycles, is not considered viable. For the case of interest here, the log-periodic oscillations
reflect the discrete invariance of the original Hamiltonian of equation (3.1). This symmetry
protects the periodicity even in the continuum limit. However, this remnant of the discrete
structure is very small numerically.

It is possible to design toy models [28] where the effect is larger for instance, the quadratic
map

h̃n+1 = ξ h̃n + (1 − ξ)h̃2
n, (11.12)

for small values of ξ . The first nonzero Fourier mode is quite visible in the analogue of C1

defined in equation (11.4) as shown in figure 7 for ξ = 0.1.
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Figure 7. The analogue of C1 in figure 6, for the quadratic map of equation (11.12) with ξ = 0.1,
versus the natural logarithm of the scaling variable y.

12. Nontrivial continuum limits

12.1. The infinite cutoff limit

In this section, we apply the general procedure outlined by Wilson in [32] for the approximate
recursion formula of equation (5.1) to the HM. We consider a sequence K = 1, 2, . . . of
models with β = βc − λ−K

1 u, where u is positive but not too large and λ1 is the only relevant
eigenvalue as in section 11. βc depends on the particular choice of initial local measure W0.
We introduce the increasing sequence of UV cutoffs

�K = 2
K
D �R, (12.1)

with �R being a scale of reference. We define the renormalized mass

m2
R = �2

K

χ(2)(βc − λ−Ku)
, (12.2)

where χ(2)
(
βc − λ−K

1 u
)

means the susceptibility at β = βc − λ−K
1 u. Given that

λ
γ

1 = 2
2
D , (12.3)

the dependence on the UV cutoff disappears at leading order and one obtains

m2
R = �2

Ruγ

A
(2)
0 + A

(2)
1 u�

(
�R

�K

) 2�
γ + LPC + · · ·

, (12.4)

with the log-periodic corrections

LPC = A(2)
per. cos

(
ω

(
ln u +

2

γ
ln

(
�R

�K

))
+ φ(2)

)
. (12.5)

In the infinite cutoff limit (K → ∞), the subleading corrections disappear. On the other hand,
the LPC do not, and we are in the presence of a limit cycle with a cutoff dependence quite
similar to [126, 127]. Strictly speaking, the infinite cutoff limit does not exist, however, for
practical purpose, the effects of the oscillations are so small that it introduces uncertainties
that are smaller than the accuracy with which we establish the universality.

We could now define renormalized coupling constants in cutoff units using the higher
order χ(q) just as we have done in equation (12.2) for the renormalized mass. However, it is
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Table 3. Universal values of U(2l)�.

2l U(2l)�

4 1.505 871
6 18.107 22
8 579.970

10 35 653.8
12 3.577 69 × 106

14 5.317 63 × 108

16 1.097 20 × 1011

18 3.000 25 × 1013

20 1.049 98 × 1016

usually more convenient [128] to use the value of these couplings in units of the renormalized
mass. We thus consider dimensionless couplings of the form

U(q) ∝ χ(q)
(
βc − λ−L

1 u
)
m

q(1+D/2)−D

R . (12.6)

The fact that the quantity is dimensionless implies that the UV cutoff dependence disappears
and we are left with a quantity proportional to the ratios of susceptibilities defined in
equation (11.6). For D = 3, we define

U(2l) ≡ limβ→βc
(−1)l+1χ(2l)(χ(2))(3−5l)/2β3(1−l)/2. (12.7)

In subsection 11.4, it has been argued that along the unstable manifold, this quantity is
approximately universal. Indeed by taking the limit β → βc, the flow starts on the stable
manifold but then ends up on the unstable manifold and the U(2l) should be universal in the
approximation where the very small log-periodic oscillations are neglected. This approximate
universality means that once we have picked the renormalized mass, all the other renormalized
couplings are completely fixed.

A counterpart of this discussion for the LPA of ERGE can be found in sections 2.10 and
3.4 of [8] where a discussion of the various continuum limits that can be constructed near the
Gaussian fixed point can also be found. Field theoretical approaches of IR stable trajectories
are also discussed in [24–26]. It would be interesting to see how the notions developed in
these articles (for instance the ‘large river effect’) can be used for the HM.

12.2. Numerical estimates of the universal ratios

These expectations have been checked numerically in [129] by calculating the U(2l)� for four
different measures. The results were consistent with universality with six or seven significant
digits. The results are given in table 3 with uncertainties of order 1 in the last printed digit.
Various fits of the asymptotic behaviour were performed in [129] and it was concluded that

the leading growth is consistent with

U(q)� ≈ q!. (12.8)

This is illustrated in figure 8 where ln(U(2q+2)�/U(2q)�) is plotted versus ln(2q). A factorial
growth as in equation (12.8) would imply a straight line with slope 2, which is very close to
the slope 2.1 of the linear fit in figure 8.

This factorial growth is similar to what is found in [130–133] for other models studied
in the context of multiparticle production. Note that the generating function of the connected
2l-points function has a 1/(2l)! factor at order 2l (see equation (2.8)) which means that the
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Figure 8. ln(U(2q+2)�/U(2q)�) versus ln(2q). The straight line has a slope 2.11.

Figure 9. U(4)� estimates as the number of iterations n increases.

expansion of the generating function of the connected functions in powers of an external field
has a finite radius of convergence.

12.3. Other universal ratios

The U 2r� were calculated by picking an arbitrary measure, finding βc corresponding to that
measure and then calculating Rn until the ratios stabilize with sufficient accuracy. In this
process, it can be noted that when Rn � R�, typically after 20 or 30 iterations, the U 2r

temporarily stabilize at different values than the final ones. We call these temporary values
Ū 2r�. This is illustrated in figure 9 for r = 2. This figure shows the importance of going
sufficiently far from the nontrivial fixed point to get the correct answer. Similar behaviour
with temporary plateaus can be found for the LPA of ERGE in [26]. Ū 2r� can be calculated
from the numerical coefficients of R�. For instance,

Ū 4� � 24 × (0.053 537 − 0.358 712/2)/(2 × 0.35871)7/2 � 0.8287 (12.9)

This number was calculated by expanding the logarithm of equation (7.9) and then fixing the
normalizations as in equation (12.7). A few other values are given in table 4. They are clearly
different from the U 2r�. From values for r up to 10, their growth seems consistent with a
simple factorial.
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Table 4. Universal values Ū (2l)�.

2l Ū (2l)�

4 0.828 719
6 4.177 57
8 49.3335

10 1033.20

12.4. The critical potential of the symmetric phase

Following section 2, the effective potential can now be expressed as a function of χ(2), φc

and the U 2r�. To simplify the notations, we define m ≡ (χ(2))−1/2, the renormalized mass in
cutoff units. For D = 3, the effective potential reads

Veff(φc) = m3F(φcm
−1/2), (12.10)

with

F(x) =
∞∑

r=1

f2r

2r!
x2r , (12.11)

and f2 = 1, f4 = −U 4�, f6 = 10(U 4�)2 − U 6� etc. . . Equations (7.15) and (12.10) have
the same form. The correspondence is m ↔ �−nmax . If we calculate the universal ratios, the
parameter m or �−nmax disappears, and we obtain numerical values Ū (2l)� for equation (7.15)
and the distinct values U(2l)� for equation (12.10). Consequently, the function F is distinct
from the function U in equation (7.15).

In [129], rescaling in both coordinates was applied in order to compare with a
parametrization introduced by Campostrini, Pelissetto, Rossi and Vicari [134] where the
effective potential is expressed in terms of a universal function

A(z) = z2/2 + z4/24 +
∑
l�3

r2l

(2l)!
z2l . (12.12)

We have

r2l = f2r/f
r−1
4 , (12.13)

and these quantities can be trivially re-expressed in terms of the U 2r�, for instance,

r6 = 10 − U(6)�

(U(4)�)2
. (12.14)

Numerical values in table 5 are not very far from those calculated for nearest neighbour
models. Approximate relations among the r2l [135, 134] were also checked in [129].
The first four coefficients of the field expansion are positive, and there is no convexity
issue near the origin. The discussion of the convexity at arbitrary field strength requires
some understanding of the radius of convergence of the expansion. The convexity of the
effective potential has been demonstrated for ERGE, using spectral representations for the RG
flows, in [136] where a connection between this issue and the finite time singularity discussed
above in subsection 9.5 is also drawn.
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Table 5. Universal values of r2l calculated numerically and compared to values obtained for the
nearest neighbour Ising universality class.

2 l r2l r2l for other models

6 2.014 9752 2.048(5) [134]
8 2.679 529 2.28(8) [134]

10 −9.601 18 −13(4) [134]
12 10.7681 20(12) [137]
14 763.062 560(370) [137]

Table 6. γ,� and βc/N for N = 1, . . . , 20.

N γ � βc/N

1 1.299 140 73 0.425 946 859 1.179 030 170
2 1.416 449 96 0.475 380 831 1.236 763 288
3 1.522 279 70 0.532 691 965 1.275 794 011
4 1.608 728 17 0.590 232 008 1.302 790 391
5 1.675 510 51 0.642 369 187 1.322 083 069
6 1.726 177 03 0.686 892 637 1.336 351 901
7 1.764 798 63 0.723 880 426 1.347 244 235
8 1.794 692 74 0.754 352 622 1.355 791 342
9 1.818 271 05 0.779 508 505 1.362 657 559

10 1.837 222 91 0.800 424 484 1.368 284 407
11 1.852 726 36 0.817 977 695 1.372 974 325
12 1.865 610 92 0.832 855 522 1.376 940 318
13 1.876 469 98 0.845 589 221 1.380 336 209
14 1.885 735 62 0.856 588 705 1.383 275 590
15 1.893 728 12 0.866 171 682 1.385 844 022
16 1.900 689 03 0.874 586 271 1.388 107 107
17 1.906 803 38 0.882 027 998 1.390 115 936
18 1.912 215 07 0.888 652 409 1.391 910 870
19 1.917 037 52 0.894 584 429 1.393 524 199
20 1.921 361 21 0.899 925 325 1.394 982 051
∞ 2 1 2−c

2(c−1)
= 1.423 66..

13. The large-N limit

13.1. Calculations at finite N

If we keep the O(N) symmetry unbroken, the Fourier transform of the local measure depends
only on �k · �k ≡ u. Here �k is a source conjugated to the local field variable �φ. Replacing k by
u and the second derivative by the N-dimensional Laplacian in equation (3.12), we obtain the
RG transformation for the Fourier transform of the local measure

Rn+1,N (u) ∝ exp

(
−1

2
β

(
4u

∂2

∂u2
+ 2N

∂

∂u

))
(Rn,N(cu/4))2. (13.1)

The values of the exponents γ,� and the inverse critical temperature for a measure
generalized Ising measure (or nonlinear sigma model measure) δ( �φ · �φ − 1) calculated in [18]
are given in table 6. To facilitate the comparison, we also display ν = γ /2 (since η = 0 here)
and ω = �/ν in table 7. The HM results coincide with the four digits given in column (2)
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Table 7. ν, ω and α for N = 1, . . . , 20.

N ν = γ /2 ω = �/ν α = 2 − 3ν

1 0.649 570 0.655 736 0.051 289
2 0.708 225 0.671 229 −0.124 675
3 0.761 140 0.699 861 −0.283 420
4 0.804 364 0.733 787 −0.413 092
5 0.837 755 0.766 774 −0.513 266
6 0.863 089 0.795 854 −0.589 266
7 0.882 399 0.820 355 −0.647 198
8 0.897 346 0.840 648 −0.692 039
9 0.909 136 0.857 417 −0.727 407

10 0.918 611 0.871 342 −0.755 834

of tables 3 (for ν) and 4 (for ω) in [101] for the Polchinski equation. They coincide with the
six digits for ν given in the line d = 3 of table 8 of [14] for the HM with N = 1, 2, 3, 5 and
10. As in the case N = 1 discussed before, we found discrepancies of order 1 in the fifth
digit of ν and slightly larger for ω with the values found in table 1 of [57]. For N = 1, the
same discrepancy can be found in [17, 19]. Our estimated errors are of order 1 in the 9th digit.
For N = 1, this is confirmed by an independent method [56]. For N = 2, 3, 5 and 10, this
is confirmed up to the sixth digit [14]. Consequently, a discrepancy in the 5th digit cannot
be explained by numerical errors. It seems clear that the two models are inequivalent. Note
also that for N � 2, α, the specific heat exponent shown in table 7 is more negative than for
nearest neighbour models [23, 34].

13.2. Ma’s equation

The basic RG equation in the large-N limit was first derived by Ma [138]. It can be used
for conventional O(N) sigma models or for the O(N) version of the HM. We consider the
partition function

Z(�J ) =
∏
x

∫ +∞

−∞
dNφx e−S+

∑
x

�Jx
�φx , (13.2)

with

S = −1

2

∑
xy

�φx�xy
�φy +

∑
x

Vo

(
φ2

x

)
. (13.3)

We use the notation φ2
x ≡ �φx. �φx , and �xy is a symmetric matrix with negative eigenvalues.

We assume that
∑

x �xy = 0. This condition is not satisfied by the quadratic form appearing
in equation (3.1). Using results of subsection 14.1, it is possible to show that a term A�

∑
x φ2

x

must added to βH , the non-local part of the action, in order to satisfy this condition. In
order to keep the original partition function invariant, this term must be subtracted from the
original potential. Consequently, the potential in equation (13.3) is related to the local measure
introduced in section 3 by the relation

V0(φ
2) = −ln W0(φ) − A�φ2. (13.4)

One sees that V0 = 0 for the Gaussian fixed point. Defining the rescaled potential

V0(X) = NU0

(
X

N

)
, (13.5)
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and using a saddle point calculation of the partition function in the large-N limit, it is possible
to show [138, 139] that M2 ≡ 2∂Veff/∂φ2

c obeys the self-consistent equation

2U ′
0

(
φ2

c + f�(M2)
) = M2, (13.6)

where f�(M2) is the one-loop integral corresponding to the quadratic form � and a mass term
M2. The prime denotes the derivative with respect to φ2. M2 was denoted u in subsection 9.3.
For the HM, it is shown in section 8 that the function f ,

fHM(z) =
∞∑

n=0

2−n−1

2A�(c/2)n + z
. (13.7)

For comparison, for a sharp cutoff model (SCM) in three dimensions, we have

fSCM(z) =
∫

|k|�1

d3k

(2π)3

1

k2 + z
. (13.8)

For a generalization of the Ising model (nonlinear sigma models) with a local measure
δ(φ2−1) as in [18], the saddle point condition simplifies to f (M2) = 1/N . For the HM, βc can
then be determined from the condition fHM(0) = 1/N . This implies βc = N(2−c)/(2(c−1)).
This result was verified in [18] and is consistent with table 6.

Let us consider two models, the first one with a rescaled potential U0, an UV cutoff �

and a quadratic form � and a second model with a rescaled potential U0,S , an UV cutoff �/S

and a quadratic form �S . For D = 3 and in the large-N limit, the two models have the same
dimensionful zero-momentum Green’s functions provided that

U ′
0,S(φ

2) = S2U ′
0((φ

2 − f�S
(2U ′

0,S(φ
2))/S + f�((2/S2)U ′

0,S(φ
2))). (13.9)

In the two cases considered above f� = f��
≡ f , and the fixed point equation becomes very

simple. In addition, β will be set to 1 in the rest of this section.
Following references [138, 139], we introduce the inverse function

F(2U ′
0(φ

2)) = φ2, (13.10)

and the function H(z) ≡ F(z) − f (z). With these notations, the fixed point equation
corresponding to equation (13.9) is simply

H(z) = SH(z/S2). (13.11)

For the SCM, S is allowed to vary continuously in equation (13.11) and the general
solution is

F(z) = fSCM(z) + Kz1/2. (13.12)

For the HM, with D = 3, S can only be an integer power of � = 21/3 and the general solution
has an infinite number of free parameters

F(z) = fHM(z) +
∑

q

Kqz
1/2+iqω, (13.13)

with

ω ≡ 3π

ln 2
� 13.6, (13.14)

and q runs over positive and negative integers. There exists a unique choice of the Kq in
equation (13.13) which cancels exactly the singular part of fHM. It was shown [140] that the
fixed point corresponds to

F�(z) = fHM,reg. = 1

4A�

∞∑
l=0

( −z

2A�

)l 1

1 − c2l−1
. (13.15)

This expansion has a radius of convergence 2A�c2 � 2.7024 for β = 1.
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φφφφ

Figure 10. z versus F�
HM(z).

φφφφ

φφφφ

Figure 11. U�
0 (φ2) for the HM with a parametric plot (filled squares), the series truncated at order

50 (thick solid line) and Padé approximants [4/1] (thin line slightly above the squares) and [5/2]
(thin line closer to the squares). The constant has been fixed in such a way that the value at the
minimum is zero (upper graph). In the lower graph, we have added A�φ2 to the [5/2] Padé.

13.3. Singularities of the critical potential U�
0

Following [140], we can use equation (13.15) to define F(z) on the negative real axis. We
remind that F plays the role of φ2. As we move towards more negative values of z, F

becomes zero within the radius of convergence of the expansion. The situation is illustrated in
figure 10. Numerically, F�(−1.5107 . . .) = 0. We then re-expand the series about that value
of z (which corresponds to F = φ2 = 0) and invert it. The resulting series is an expansion of
2U�

0 ’ in φ2. After integration, and up to an arbitrary constant u0, we obtain a Taylor series for
the critical potential U�

0 . We denote the expansion as

U�
0 (φ2) =

∞∑
n=0

un(φ
2)n. (13.16)
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The absolute value of the coefficients appears to grow at an exponential rate. Linear fits
suggest a radius of convergence of order 2.5. The signs follow the periodic pattern + + −−.
This suggests singularities along the imaginary axis. This analysis is confirmed by an analysis
[140] of the poles of Padé approximants. As φ2 exceeds the critical values estimated in the
previous section, the power series is unable to reproduce the expected function U�

0 . The
situation is illustrated in figure 11. For comparison, we have also added A�φ2 to U�

0 in order to
undo the subtraction of equation (13.4) and obtain a function that has a simple relation with the
effective potential as in equation (7.15). Again, the resulting function appears to be convex.
The numerical values of U�

0 in figure 11 have been calculated using a parametric representation
discussed in [140]. Finite radius of convergence has been observed in expansions in the power
of the fields based on ERGE in the LPA [19, 141]. More generally, it would be interesting to
compare the large-N limit for the HM and in the ERGE approach as discussed, for instance,
in [101, 142–146].

13.4. Open problems

The phase diagram of 3D models with a conventional kinetic term shows interesting features
such as a line of tricritical points ending at the so-called BMB point [139, 147, 148]. A similar
study should be done for the HM. A general interpretation of the complex singularities of
the critical potential would be interesting. From the numerical values of the exponents, it is
possible to estimate the low-order coefficients of the 1/N expansion [149]. The method of
calculation of the coefficients using numerical values was developed with the Sterling series
for which we were able to calculate the first seven coefficients accurately. These results are
consistent with the hypothesis that the 1/N expansions considered are asymptotic but Borel
summable (no indication for poles on the positive real axis).

14. The improvement of the hierarchical approximation

In this section, we describe the HM as a spin model on the 2-adic line. The main motivation
for this new way to look at the model is that it suggests a way to modify the model in order to
approximate nearest neighbour models in D dimensions.

14.1. Scalar models on ultrametric spaces

It is possible to reformulate the HM as a scalar model on the 2-adic line [65]. We give here a
presentation [66] that does not require a detailed knowledge of the p-adic numbers. We will
rewrite the Hamiltonian of the HM given in equation (3.1) using a function v(x, y) which
specifies the level l at which x and y start to differ. More precisely, if x and y are distinct,
v(x, y) = l when xm = ym for all m such that n � m > l > 0 and xl �= yl . At coinciding
arguments, we define v(x, x) = 0. Referring to figure 1, we can see that 2v(x,y) is the size of
the smallest block containing both x and y. H can then be rewritten as

H = −1

2

(∑
x,y

Kxyφxφy + L
∑

x

φ2
x

)
, (14.1)

where

Kxy =


(( c

4

)v(x,y)

−
( c

4

)n+1
) (

1 − c

4

)−1
if x �= y

0 if x = y

(14.2)
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and

L =
(( c

4

)
−

( c

4

)n+1
) (

1 − c

4

)−1
. (14.3)

As made clear by the above equations, the strength of the interaction between two fields
φx and φy depends only on the value of v(x, y). Consequently, the invariance of v(x, y) under
a group of transformation implies the invariance of H under corresponding transformations.

For the reader familiar with the p-adic numbers, The function 2v(x,y) is a regularized
version of the 2-adic distance. Namely,

2v(x,y) =
{|x − y|2 if |x − y|2 > 1

1 if |x − y|2 � 1.
(14.4)

The 2-adic norm satisfies a relation stronger than the triangle inequality, namely

|x + y|2 � Max(|x|2, |y|2). (14.5)

Normed spaces for which this stronger inequality holds are called ultrametric spaces. These
concepts are explained in more detail for instance in [61, 63].

In order to describe the invariance of v(x, y), we associate with the sequence of 0’s and
1’s xn, . . . , x1, introduced in section 3 for 2n sites, a rational number of the form

x =
n∑

m=1

xm2−m. (14.6)

The reason for this ‘inversion’ is that |2|2 = 2−1, and similarly in momentum space, the largest
shell will correspond to odd integers, the next shell by the multiple of 2 of these odd integers
and so on. If two numbers x and y have this form then x + y can also be written in this form
provided that we drop the integer part of the sum. Equivalently, we can write x = q/2n and
y = r/2n with q and r integers between 0 and 2n − 1 and add q and r modulo 2n. Since the
integers modulo 2n form an additive group, the set of fractions associated with the sites form
a group for the addition modulo 1. The odd integers modulo 2n form a multiplicative group.
In the limit n → ∞, the group is called the 2-adic units. We can pick a canonical form for the
representatives of such integers as

u = 1 + 2z, (14.7)

where z is a positive integer between 0 and 2n−1 − 1. Obviously, if x has the form of
equation (14.6) then ux has also this form after discarding its integer part.

We are now in a position to define a group of transformation acting on the fractions
associated with the sites. If x and a have the form of equation (14.6) and u has the form of
equation (14.7), we define a transformation of x depending on a and u and denoted x[u, a]
which reads

x[u, a] = ux + a, (14.8)

where the rhs is understood modulo 1. It is clear that these transformations form a (non-
Abelian) group that we could call the Poincaré group of the HM. We can interpret x[0, a] as
a translation and x[u, 0] as a rotation like in the usual Poincaré groups. In that sense, this is
a ‘global’ group of transformation. This is in contrast with the symmetries noted by Dyson
[5] which consists in interchanging xm . . . xl+11xl−1 . . . x1 and xm . . . xl+10xl−1 . . . x1 ‘locally’
which are discussed in section 3. It is possible to prove that

v(x[u, a], y[u, a]) = v(x, y). (14.9)

Since Kxy depends only on v(x, y), this implies that

Kxy = Kx[u,a]y[u,a] (14.10)
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that H is invariant under the transformation

φx −→ φx[u,a]. (14.11)

We can then prove that

〈φx[u,a]φy[u,a]〉 = 〈φxφy〉. (14.12)

14.2. Improvement of the hierarchical approximation

In this subsection, we follow [20, 21]. We consider a Gaussian model on a finite one-
dimensional lattice with 2n sites. The Fourier modes of the scalar field are denoted by �k ,
where ��

k = �−k and k are integers used to express the momenta in 2π
2n units. These integers

are understood modulo 2n in the following (periodicity in momentum space). The action reads

S = 1

2n+1

2n∑
k=1

g(k)�k�−k, (14.13)

where g(k) is even, real and positive.
We proceed in three steps. First, we relabel the momenta in a way which is convenient to

read their ‘shell’ assignment as in Wilson [3]. This relabelling allows us to introduce a group
of transformation whose orbits are precisely these shells. The group is the multiplicative
group of the 2-adic units and its representations are known [150]. Completeness can be used
to expand the kinetic term, i.e., the function g(k), for each of the shells. This solves the
bookkeeping problem. Nicely enough, the classification of the representations of the group
mentioned above comes with an index indicating its resolution power (called the degree of
ramification). This naturally provides the successive orders of our perturbative expansion.
We then show that if we only retain the trivial representation in the expansion, we obtain the
hierarchical approximation. In this limit, the group of transformation is a symmetry of the
action which can be identified with the symmetry group of the HM mentioned above.

We can relabel the momenta k. For this purpose, we use a set of orthonormal functions
which is a discrete version of the Walsh system [151]. We first define

�0(k) ≡


1 if k = −2n−2 + 1, . . . , 2n−2 − 1
ω if k = 2n−2

ωA�

if k = −2n−2

0 otherwise,

(14.14)

and

�1(k) ≡ 1 − �0(k), (14.15)

with the notation ω ≡ 1+i
2 . For a given integer a = a0 + a121 + a222 + · · · + an−12n−1 with

al = 0or1, we define

fa(k) ≡
n−1∏
l=0

�al
(2lk). (14.16)

It is clear that f �
a (k) = fa(−k) and we can check that∑
k

fa(k)f �
b (k) = δa,b. (14.17)

A more detailed analysis shows that fa(k) is non-zero only when k = ±k[a] for a function
k[a] which will be specified. More precisely, it is possible to write

fa(k) = ωδk,k[a] + ω�δk,−k[a]. (14.18)



R92 Topical Review

This relation defines a one-to-one map k[a]. In the following, a will also be treated as an
integer modulo 2n. We can now expand

�k =
2n∑

a=1

cafa(k). (14.19)

We can then rewrite

S = 1

2n+1

2n∑
a=1

g̃(a)c2
a, (14.20)

where g̃(a) ≡ g(k[a]). By construction, the ca are real field variables. For convenience, we
shall also use their complex form

σa ≡ 1

2
(ca + c−a) +

i

2
(ca − c−a). (14.21)

We can now explain the correspondence between this relabelling and Wilson’s cell
decomposition. Clearly, if a0 = 1, fa(k) is supported in the high momentum region.
More precisely, the 0th shell, i.e, the one integrated first in the RG procedure, consists in
configurations which can be expanded in terms of the f1+a12+···(k). Similarly, the modes
corresponding to the lth shell are made out of the f2l+al+12l+1+···(k).

14.3. The hierarchical approximation and its systematic improvement

In the previous section, we have introduced new field variables ca corresponding to the lth shell
when a can be divided by 2l but not by 2l+1. This property is not affected if a is multiplied
(modulo 2n) by any odd number. As explained in subsection 14.1, odd numbers form an
Abelian group with respect to the multiplication modulo 2n. The orbit of this group within
the integers modulo 2n is precisely the sets of numbers that we have put in correspondence
with the shells. The representations of this group have been studied and classified [150]. In
order to use this classification, we have to embed the labels introduced above and denoted
by a, in the 2-adic integers. When a can be divided by 2l but not by 2l+1, we say that the
2-adic norm, noted |a|2, is 2−l . In the infinite volume limit, or in other words when n tends to
infinity, the multiplicative group of the odd numbers is the 2-adic units. The representations
of this group will be denoted by �s . This means that if u1 and u2 are 2-adic units, then
�s(u1u2) = �s(u1)�s(u2). The label s specifies the representation in a way which will be
explained below.

It is easy to construct explicitly the representations �s . A 2-adic unit can be written [152]
as u = ±Exp(4z), where z is a (2-adic) integer and Exp the 2-adic exponential. �s(u) is even
or odd under multiplication by −1. On the other hand, z is an additive parametrization and
the z dependence of �s will be of the form ei 2πzq

2r , where q is an odd integer and r is a positive
integer. Taibleson [150] calls r + 2 the degree of ramification. In summary, the label s is a
short notation for the parity, r and q an odd integer modulo 2r .

We can now use these representations to expand the kinetic term function g̃(a) in each
shell. For a given shell l, the a have the form 2lu (so |a|2 = 2−l) and we can write

g̃(2lu) =
∑

s

g
l, s

�s(u). (14.22)

At finite volume, i.e., at finite n, the units are understood modulo 2n−l , and consequently the
sum over the representations s is restricted to r � n − l − 2. The numerical coefficients g

l,s

are easily calculable using the orthogonality relations among the representation.
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The hierarchical approximation is obtained by retaining only the trivial representation in
the expansion equation (14.22). In this approximation, and using the definition introduced in
equation (14.21), the action reads

S = 1

2n+1

n−1∑
l=0

g
l, +, 0

∑
a:|a|2=2−l

σaσ−a. (14.23)

After a Fourier transform, we obtain a hierarchical model having the general form (with
arbitrary bl couplings at level l) (see section 6).

The classification of the representations of the 2-adic units suggests that we improve the
hierarchical approximation by taking into account the additional terms in equation (14.22)
order by order in the degree of ramification. Intuitively, this corresponds to the fact that the
degree of ramification measures the ‘power of resolution’ of the representation. Numerically,
this works reasonably well: in a simple example, the coefficients become smaller as the degree
increases [20].

The actions written above take a more familiar form after Fourier transformation in a. In
general, the lth momentum shell is responsible for interactions among the averages of the
Fourier transformed fields inside boxes of size 2l . In the hierarchical approximation,
the interactions depend only on the position of these boxes inside boxes of size 2l+1. When
the corrections are introduced up to r = rmax, the interactions depend on the position inside
boxes of size 2l+2+rmax .

14.4. The improvement of the hierarchical approximation as a symmetry breaking problem

It is important to realize that in the hierarchical approximation, S is invariant under the
transformation

σa −→ σua (14.24)

for any odd number u. When the other terms of the expansion are incorporated, this symmetry
is broken by each term in a definite way. This allows us to use Ward identities techniques. We
discuss the simplest case below.

Suppose we want to calculate the two-point function using the perturbative expansion
described in the previous section. First we use the new variables ca and the inverse of the map
k[a] defined in section 2 to write

〈�k�−k〉 = 〈
c2
a[k]

〉
. (14.25)

In the hierarchical approximation, the value of this expression depends only on the
momentum shell specified by |a|2. In other words,〈

c2
ua

〉
0 = 〈

c2
a

〉
0, (14.26)

where 〈· · ·〉0 means that the quantity is evaluated, at order 0, or in other words, in the
hierarchical approximation.

Suppose that we now include a correction δg̃(a) to the approximation of g̃(a). Then in
first order in this perturbation, we recover the a momentum dependence within the shells given
by 〈

c2
ua

〉
1 = 〈

c2
a

〉
1 − 1

2n+1

∑
b

(δg̃(ub) − δg̃(b))
〈
c2
bc

2
a

〉
0. (14.27)

In the model considered here, the
〈
c2
bc

2
a

〉
0 contribution can be evaluated straightforwardly, and

we can check that we recover the first term in the expansion of (1/g̃(ua)) − (1/g̃(a))). The
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important point is that the corrections are evaluated using the unperturbed action. It is clear
that similar methods can be used for higher point functions and in the interacting case.

An extension to D dimension can be constructed easily by noting the approximate
correspondence between the integration over successive shells and the block-spin method.
On a D-dimensional cubic lattice, we can decompose the block-spin procedure into D steps
(one in each directions).

14.5. Other applications

The 2-adic formulation of the HM can be used for other purposes. For instance, it is possible to
understand the absence of certain diagrams in the approximate recursion formula [4]. The lack
of diagrams with three lines having large momenta coming out of a vertex can be understood
from the fact that the sum of two 2-adic integers with 2-adic norm 1 is a 2-adic integer with a
strictly lower norm. In simpler words, the sum of two odd numbers is even. 2-adic analysis
was also used to study the Symanzik representation of the HM [153]. The basic ingredient
[64] being that the quadratic form in H defines a random walk with a Hausdorff dimension
2/D.

15. Models with approximate supersymmetry

In subsections 7.6 and 12.1, we made clear that the continuum limit requires a fine tuning and
that this procedure may be seen as unnatural. This feature is clearly related to the existence
of an unstable direction. In four dimensions, there are several ways to get rid of the unstable
directions and limit the flow to marginal directions. One possibility is to impose a gauge
symmetry that forbids a mass term for the gauge fields. Another possibility is to introduce new
degrees of freedom with opposite statistics that partially cancel the quantum fluctuations. This
possibility has been exploited in the perturbative treatment of supersymmetric models. In the
following, we follow this second idea and construct models with approximate supersymmetry.
Other hierarchical models involving fermions can be found in the literature [154, 155].

We consider a free action for N massless scalar fields φ(i)
x and fermion fields ψ(i)

x and ψ̄(i)
x :

Sfree = 1

2

∑
x,y,i

φ(i)
x D2

xyφ
(i)
y +

∑
x,y,i

ψ̄ (i)
x Dxyψ

(i)
y , (15.1)

where x and y run over the sites and i from 1 to N. The ψ(i)
x and ψ̄(i)

x are Grassmann numbers
integrated with a measure∫ ∏

x,i

dψ(i)
x dψ̄(i)

x . (15.2)

We require that D2
xy has positive eigenvalues and that we can write

D2
xy =

∑
z

DxzDzy. (15.3)

The free action Sfree
B + Sfree

F is invariant at first order under the transformation

δφ(i)
x = εψ̄(i)

x + ψ(i)
x ε̄

δψ(i)
x = ε

∑
x

Dxyφ
(i)
y

δψ̄(i)
x = ε̄

∑
x

Dxyφ
(i)
y .

(15.4)
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The ε and ε̄ are Grassmann numbers. Integration by part or Leibnitz’s rule cannot be used for
Dxy , and the order εε̄ variations do not cancel.

We now give the explicit form for the bosonic part at finite volume:

Sfree
B = −βB

2

nmax∑
n=1

(cB

4

)n ∑
xnmax ,...,xn+1,i

( ∑
xn,...,x1

φ
(i)

(xnmax ,...,x1)

)2

+
βBcB

2(2 − cB)

∑
xnmax ,...,xn+1,i

(
φ

(i)

(xnmax ,...,x1)

)2
, (15.5)

with cB = c = 21−2/D . The fermionic part reads

Sfree
F = −βF

nmax∑
n=1

(cF

4

)n ∑
xnmax ,...,xn+1,i

( ∑
xn,...,x1

ψ̄
(i)

(xnmax ,...,x1)

) ( ∑
xn,...,x1

ψ
(i)

(xnmax ,...,x1)

)
(15.6)

+
βF cF

2 − cF

∑
xnmax ,...,xn+1,i

ψ̄
(i)

(xnmax ,...,x1)
ψ

(i)

(xnmax ,...,x1)
, (15.7)

with cF = 21−1/D . We have the simple relation cB/2 = (cF /2)2. Using the techniques
explained in [66], one can show that the fermionic operator is the square root of the bosonic
operator (see equation (15.3)) provided that

βF cF

2 − cF

=
(

βBcB

2 − cB

) 1
2

. (15.8)

We can introduce local interactions. The Grassmann nature of the fermionic fields restricts
severely the type of interactions allowed. For instance, for one flavour (N = 1), the most
general bosonic local measure is

W(φ,ψ, ψ̄) = W(φ) + ψψ̄A(φ). (15.9)

For convenience, we can reabsorb the local quadratic terms in the local measure. In the
following, W(φ) will take the Landau–Ginzburg (LG) form:

W(φ) ∝ exp

(
−

(
βBcB

2(2 − cB)
+

1

2
m2

B

)
φ2 − λBφ4

)
. (15.10)

If the two functions W and A are proportional, the fermionic degrees of freedom decouple.
The renormalization group transformation takes the form

W → 2A � W (15.11)

A → 2βF A � W +

(
4

cF

)
W � W, (15.12)

where the � operation is defined as

(A � B)(φ) ≡ e
βB
2 (φ2)

∫
dφ′A

(
φ2c

− 1
2

B − φ′)
2

 B

(
φ2c

− 1
2

B + φ′)
2

 . (15.13)

The introduction of a Yukawa coupling can be achieved by having A(φ) linear. Such a
term breaks explicitly the Z2 symmetry of the LG measure. Models with two flavours
(i = 1, 2) with the type of bilinear coupling appearing in the Wess–Zumino [156] model can be
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Figure 12. The renormalized mass as a function of the bare mass in a bosonic O(2) model with
bare quartic coupling fixed to 0.01 (top), with bare quartic coupling fixed to 0 and a Yukawa
coupling equal to

√
0.08 (middle) and with bare quartic coupling fixed to 0.01 and a Yukawa

coupling equal to
√

0.08 (bottom).

written as

W(φ(i), ψ(i), ψ̄ (i)) = W(φ(i)) + A(φ(i))(ψ̄(1)ψ(1) + ψ̄(2)ψ(2))

+ B(φ(i))ψ(1)ψ(2) − B�(φ(i))ψ̄(1)ψ̄ (2) + T (φ(i))ψ̄(1)ψ(1)ψ̄ (2)ψ(2). (15.14)

This is not the most general measure, however it closes under the renormalization group
transformation which takes the form

W → (W � T + A � A + B � B�) ≡ W ′

A → βF W ′ +
4

cF

A � T

B → 4

cF

B � T

T → 8

c2
F

T � T + βF

8

cF

A � T + (βF )2W ′.

(15.15)
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In addition, if we impose that the function B has the following form:

B(φ(i)) = (φ(1) + iφ(2))P ((φ(1))2 + (φ(2))2), (15.16)

while W,A and T are O(2) invariant, the model is then invariant under the R-symmetry

(φ(1) + iφ(2)) → eiθ (φ(1) + iφ(2))

ψ(j) → e−i θ
2 ψ(j) (15.17)

ψ̄(j) → ei θ
2 ψ̄(j).

We summarize three numerical calculations [157] performed for the second model with
D = 4. First, the case where the fermions decouple from the bosons was considered. W takes
the form

W(φ) ∝ exp

−
((

βBcB

2(2 − cB)

)
+

1

2
m2

B

) ∑
i

(φ(i))2 + λB

(∑
i

(φ(i))2

)2
 . (15.18)

The value of m2
R , defined as the inverse of the zero-momentum two-point function, is shown

in the top part of figure 12 as a function of m2
B . These quantities are expressed in cutoff units.

For reference, we have also displayed the one-loop perturbative result and the trivial Gaussian
result. One sees that the scalar self-interaction moves m2

R up and m2
R � 0.2 when m2

B goes to
zero. The one-loop result is quite good when m2

R is large enough but deteriorates when this
quantity becomes smaller.

The second calculation was done in a bosonic model with a bare mass mB and λB = 0
coupled to a fermion with the following couplings:

A = (−1 − mB)W

P = gyW (15.19)

T = ((−1 − mB)2 + g2
y((φ

(1))2 + (φ(2))2))W.

The results are shown in the middle part of figure 12 for gy = √
0.08 � 0.28. One sees that

the Yukawa coupling moves m2
R down. For m2

B � 0.094,mR becomes 0 and for smaller of
m2

B , we enter the broken symmetry phase.
Finally, the previous calculation was repeated with λB = 0.01 instead of 0. In perturbation

theory, the one-loop quadratic divergence cancel when mB = 0 and

8λB = g2
y, (15.20)

which justifies the choice of the coupling constant. The results are shown in figure 12. One
sees that the Yukawa coupling in part cancels the effects of the scalar self-interaction, however,
the cancellation is not as good as in the one-loop formula where mR goes to zero when m2

B

goes to zero. Instead, we found numerically that m2
R � 0.044 when m2

B goes to zero. It is of
course possible to fine tune gy in order to get mR = 0.

16. Conclusions

In conclusion, we have shown that the calculation of the effective potential at the nontrivial
fixed point (equation (7.15)) and for a massive theory in the symmetric phase (equation (12.10)
can be performed numerically with great accuracy. The second calculation requires the ability
of following the RG flows all the way from the nontrivial point to the HT attractive fixed point.
For the HM, this can be accomplished numerically or by constructing the nonlinear scaling
variables. The situation could be compared to a quantum mechanical problem which can be
solved accurately and consistently by different methods but for which there is no closed form
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solution. There remain many open problems: the construction of the scaling variables near the
Gaussian fixed point and in the broken symmetry phase, the exploration of the phase diagram
for models with N components, the explicit calculation of the 1/N expansion of the critical
exponents and most importantly, the improvement of the hierarchical approximation.

The HM is a good laboratory to explore new ideas. In particular, the idea of introducing
a large field cutoff [85] in order to produce a perturbative series with a better large-order
behaviour or to generate a new type of RG flows when the field cutoff is lowered [158]
according to the simple scheme∫

‖φ‖<φmax

Dφ e−S =
∫

‖φ‖<φmax/ξ

Dφ e−S ′(ξ). (16.1)

Our review emphasizes the connection with the ERGE and the possibility of moving
among improvements of the LPA by taking the limit � → 1 or discretizing continuous RG
flow equations. It should be reminded that before approximations are made, ERGE can be
formulated several equivalent ways. For instance, the exact Polchinski equation is related to
flow equations for the effective action [100, 159, 160] by a Legendre transform. However, their
derivative expansions are inequivalent and there is room for optimization [93]. In contrast, for
the HM, despite a programme of systematic improvement, exact equations for lattice models
remain to be found. We hope that some communication can be established between these
approaches in the future.

Except for section 15, most of the numerical work was done for D = 3. Considering
models with bosons and fermions producing effects of opposite signs on the effective potential
may help resolve controversial issues [161] regarding the triviality and the stability of the
effective potential in D = 4.

Finally, it would be desirable to apply similar methods for gauge theories. In quantum
chromodynamics, understanding how asymptotic freedom and confinement can be smoothly
connected in a single theory amounts to constructing the renormalization group (RG) flows of
the theory far away from the two fixed points of interest. In this example, it is expected
that nothing dramatic takes place as we interpolate between the two regimes; however,
understanding confinement in terms of the weak-coupling variables remains a challenge.
Proving the existence of a mass gap in Yang–Mills theories remains one of the Clay
Millennium Prize Problems. Recent efforts have made to understand the basic problems
by using decimation procedures on the lattice [38, 40, 41] by using ERGE functional methods
[10, 37, 39, 41, 42]. As the large hadron collider is almost in operation, a more solid
understanding of gauge theories should be a priority in the theory community.
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